# FLOOD INSURANCE STUDY FEDERAL EMERGENCY MANAGEMENT AGENCY

# VOLUME 1 OF 1



# TERREBONNE PARISH, LOUISIANA

(ALL JURISDICTIONS)

COMMUNITY NAME

CONSOLIDATED

GOVERNMENT

TERREBONNE PARISH,

225206

COMMUNITY NUMBER





September 7, 2023

FLOOD INSURANCE STUDY NUMBER 22109CV000A Version Number 2.6.4.6

# TABLE OF CONTENTS

### Volume 1

| <b>SEC</b>                                    | TION 1.0 – INTRODUCTION                                                                                                                                                                                                                                                                                                                                     | <b>1</b>                                                        |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1.1                                           | The National Flood Insurance Program                                                                                                                                                                                                                                                                                                                        | 1                                                               |
| 1.2                                           | Purpose of this Flood Insurance Study Report                                                                                                                                                                                                                                                                                                                | 2                                                               |
| 1.3                                           | Jurisdictions Included in the Flood Insurance Study Project                                                                                                                                                                                                                                                                                                 | 2                                                               |
| 1.4                                           | Considerations for using this Flood Insurance Study Report                                                                                                                                                                                                                                                                                                  | 4                                                               |
| <b>SEC</b><br>2.1<br>2.2<br>2.3<br>2.4<br>2.5 | TION 2.0 – FLOODPLAIN MANAGEMENT APPLICATIONS<br>Floodplain Boundaries<br>Floodways<br>Base Flood Elevations<br>Non-Encroachment Zones<br>Coastal Flood Hazard Areas<br>2.5.1 Water Elevations and the Effects of Waves<br>2.5.2 Floodplain Boundaries and BFEs for Coastal Areas<br>2.5.3 Coastal High Hazard Areas<br>2.5.4 Limit of Moderate Wave Action | <b>14</b><br>14<br>17<br>17<br>17<br>17<br>18<br>19<br>20<br>21 |
| <b>SEC</b>                                    | TION 3.0 – INSURANCE APPLICATIONS                                                                                                                                                                                                                                                                                                                           | <b>22</b>                                                       |
| 3.1                                           | National Flood Insurance Program Insurance Zones                                                                                                                                                                                                                                                                                                            | 22                                                              |
| <b>SEC</b>                                    | TION 4.0 – AREA STUDIED                                                                                                                                                                                                                                                                                                                                     | <b>22</b>                                                       |
| 4.1                                           | Basin Description                                                                                                                                                                                                                                                                                                                                           | 22                                                              |
| 4.2                                           | Principal Flood Problems                                                                                                                                                                                                                                                                                                                                    | 23                                                              |
| 4.3                                           | Non-Levee Flood Protection Measures                                                                                                                                                                                                                                                                                                                         | 23                                                              |
| 4.4                                           | Levees                                                                                                                                                                                                                                                                                                                                                      | 24                                                              |
| <b>SEC</b><br>5.1<br>5.2<br>5.3<br>5.4        | TION 5.0 – ENGINEERING METHODS<br>Hydrologic Analyses<br>Hydraulic Analyses<br>Coastal Analyses<br>5.3.1 Total Stillwater Elevations<br>5.3.2 Waves<br>5.3.3 Coastal Erosion<br>5.3.4 Wave Hazard Analyses<br>Alluvial Fan Analyses                                                                                                                         | <b>32</b><br>34<br>36<br>36<br>39<br>39<br>39<br>47             |
| <b>SEC</b><br>6.1<br>6.2<br>6.3<br>6.4<br>6.5 | TION 6.0 – MAPPING METHODS<br>Vertical and Horizontal Control<br>Base Map<br>Floodplain and Floodway Delineation<br>Coastal Flood Hazard Mapping<br>FIRM Revisions                                                                                                                                                                                          | <b>47</b><br>49<br>50<br>51<br>55                               |

|                                                                                                                                                 | 6.5.1 | Letters of Map Amendment | 55 |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------|----|--|--|
| 6.5.2 Letters of Map Revision Based on Fill                                                                                                     |       |                          |    |  |  |
|                                                                                                                                                 | 6.5.3 | Letters of Map Revision  | 56 |  |  |
|                                                                                                                                                 | 6.5.4 | Physical Map Revisions   | 56 |  |  |
|                                                                                                                                                 | 6.5.5 | Contracted Restudies     | 57 |  |  |
|                                                                                                                                                 | 6.5.6 | Community Map History    | 57 |  |  |
|                                                                                                                                                 |       |                          |    |  |  |
| <ul> <li>SECTION 7.0 - CONTRACTED STUDIES AND COMMUNITY COORDINATION</li> <li>7.1 Contracted Studies</li> <li>7.2 Community Meetings</li> </ul> |       |                          |    |  |  |
| SECTION 8.0 – ADDITIONAL INFORMATION                                                                                                            |       |                          |    |  |  |
| SECTION 9.0 – BIBLIOGRAPHY AND REFERENCES                                                                                                       |       |                          |    |  |  |
|                                                                                                                                                 |       |                          |    |  |  |
|                                                                                                                                                 |       | Figures                  |    |  |  |

| - |  |
|---|--|
|   |  |
|   |  |

#### <u>Page</u>

| Figure 1: FIRM Index                                                     | 6  |
|--------------------------------------------------------------------------|----|
| Figure 2: FIRM Notes to Users                                            | 7  |
| Figure 3: Map Legend for FIRM                                            | 10 |
| Figure 4: Floodway Schematic                                             | 17 |
| Figure 5: Wave Runup Transect Schematic                                  | 19 |
| Figure 6: Coastal Transect Schematic                                     | 21 |
| Figure 7: Frequency Discharge-Drainage Area Curves                       | 34 |
| Figure 8: 1% Annual Chance Total Stillwater Elevations for Coastal Areas | 37 |
| Figure 9: Transect Location Map                                          | 45 |

#### <u>Tables</u>

### <u>Page</u>

| Table 1: Listing of NFIP Jurisdictions                         | 2  |
|----------------------------------------------------------------|----|
| Table 2: Flooding Sources Included in this FIS Report          | 16 |
| Table 3: Flood Zone Designations by Community                  | 22 |
| Table 4: Basin Characteristics                                 | 22 |
| Table 5: Principal Flood Problems                              | 23 |
| Table 6: Historic Flooding Elevations                          | 23 |
| Table 7: Non-Levee Flood Protection Measures                   | 24 |
| Table 8: Levees                                                | 26 |
| Table 9: Summary of Discharges                                 | 33 |
| Table 10: Summary of Non-Coastal Stillwater Elevations         | 34 |
| Table 11: Stream Gage Information used to Determine Discharges | 34 |
| Table 12: Summary of Hydrologic and Hydraulic Analyses         | 35 |
| Table 13: Roughness Coefficients                               | 36 |
| Table 14: Summary of Coastal Analyses                          | 36 |

| Table 15: Tide Gage Analysis Specifics                                | 38 |
|-----------------------------------------------------------------------|----|
| Table 16: Coastal Transect Parameters                                 | 41 |
| Table 17: Summary of Alluvial Fan Analyses                            | 47 |
| Table 18: Results of Alluvial Fan Analyses                            | 47 |
| Table 19: Countywide Vertical Datum Conversion                        | 47 |
| Table 20: Stream-Based Vertical Datum Conversion                      | 49 |
| Table 21: Base Map Sources                                            | 49 |
| Table 22: Summary of Topographic Elevation Data used in Mapping       | 51 |
| Table 23: Floodway Data                                               | 51 |
| Table 24: Flood Hazard and Non-Encroachment Data for Selected Streams | 51 |
| Table 25: Summary of Coastal Transect Mapping Considerations          | 52 |
| Table 26: Incorporated Letters of Map Change                          | 56 |
| Table 27: Community Map History                                       | 58 |
| Table 28: Summary of Contracted Studies Included in this FIS Report   | 58 |
| Table 29: Community Meetings                                          | 60 |
| Table 30: Map Repositories                                            | 61 |
| Table 31: Additional Information                                      | 61 |
| Table 32: Bibliography and References                                 | 63 |

### <u>Exhibits</u>

| Flood Profiles      | Panel |   |
|---------------------|-------|---|
| Bayou Grand Caillou | 01    | Ρ |
| Ouiski Bayou        | 02-03 | Ρ |

# **Published Separately**

Flood Insurance Rate Map (FIRM)

#### FLOOD INSURANCE STUDY REPORT TERREBONNE PARISH, LOUISIANA

#### **SECTION 1.0 – INTRODUCTION**

#### 1.1 The National Flood Insurance Program

The National Flood Insurance Program (NFIP) is a voluntary Federal program that enables property owners in participating communities to purchase insurance protection against losses from flooding. This insurance is designed to provide an alternative to disaster assistance to meet the escalating costs of repairing damage to buildings and their contents caused by floods.

For decades, the national response to flood disasters was generally limited to constructing flood-control works such as dams, levees, sea-walls, and the like, and providing disaster relief to flood victims. This approach did not reduce losses nor did it discourage unwise development. In some instances, it may have actually encouraged additional development. To compound the problem, the public generally could not buy flood coverage from insurance companies, and building techniques to reduce flood damage were often overlooked.

In the face of mounting flood losses and escalating costs of disaster relief to the general taxpayers, the U.S. Congress created the NFIP. The intent was to reduce future flood damage through community floodplain management ordinances, and provide protection for property owners against potential losses through an insurance mechanism that requires a premium to be paid for the protection.

The U.S. Congress established the NFIP on August 1, 1968, with the passage of the National Flood Insurance Act of 1968. The NFIP was broadened and modified with the passage of the Flood Disaster Protection Act of 1973 and other legislative measures. It was further modified by the National Flood Insurance Reform Act of 1994 and the Flood Insurance Reform Act of 2004. The NFIP is administered by the Federal Emergency Management Agency (FEMA), which is a component of the Department of Homeland Security (DHS).

Participation in the NFIP is based on an agreement between local communities and the Federal Government. If a community adopts and enforces floodplain management regulations to reduce future flood risks to new construction and substantially improved structures in Special Flood Hazard Areas (SFHAs), the Federal Government will make flood insurance available within the community as a financial protection against flood losses. The community's floodplain management regulations must meet or exceed criteria established in accordance with Title 44 Code of Federal Regulations (CFR) Part 60, *Criteria for Land Management and Use*.

SFHAs are delineated on the community's Flood Insurance Rate Maps (FIRMs). Under the NFIP, buildings that were built before the flood hazard was identified on the community's FIRMs are generally referred to as "Pre-FIRM" buildings. When the NFIP was created, the U.S. Congress recognized that insurance for Pre-FIRM buildings would be prohibitively expensive if the premiums were not subsidized by the Federal Government. Congress also recognized that most of these floodprone buildings were built by individuals who did not have sufficient knowledge of the flood hazard to make informed decisions. The NFIP requires that full actuarial rates reflecting the complete flood risk be charged on all buildings constructed or substantially improved on or after the effective date of the initial FIRM for the community or after December 31, 1974, whichever is later. These buildings are generally referred to as "Post-FIRM" buildings.

#### **1.2** Purpose of this Flood Insurance Study Report

This Flood Insurance Study (FIS) Report revises and updates information on the existence and severity of flood hazards for the study area. The studies described in this report developed flood hazard data that will be used to establish actuarial flood insurance rates and to assist communities in efforts to implement sound floodplain management.

In some states or communities, floodplain management criteria or regulations may exist that are more restrictive than the minimum Federal requirements. Contact your State NFIP Coordinator to ensure that any higher State standards are included in the community's regulations.

#### **1.3** Jurisdictions Included in the Flood Insurance Study Project

This FIS Report covers the entire geographic area of Terrebonne Parish, Louisiana.

The jurisdictions that are included in this project area, along with the Community Identification Number (CID) for each community and the United States Geological Survey (USGS) 8-digit Hydrologic Unit Code (HUC-8) sub-basins affecting each, are shown in Table 1. The FIRM panel numbers that affect each community are listed. If the flood hazard data for the community is not included in this FIS Report, the location of that data is identified.

| Community                                     | CID    | HUC-8<br>Sub-Basin(s) | Located on<br>FIRM Panel(s)                                                            | If Not Included,<br>Location of Flood<br>Hazard Data |
|-----------------------------------------------|--------|-----------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|
| Terrebonne Parish,<br>Consolidated Government | 225206 | 08080101<br>08090302  | 22109C0025E<br>22109C0050E<br>22109C0075E<br>22109C0095E<br>22109C0100E<br>22109C0115E |                                                      |

| Table 1: L | isting o. | f NFIP | Jurisdictions |
|------------|-----------|--------|---------------|
|------------|-----------|--------|---------------|

|                                |        |                        |                            | If Not Included,  |
|--------------------------------|--------|------------------------|----------------------------|-------------------|
|                                |        | HUC-8                  | Located on                 | Location of Flood |
| Community                      | CID    | Sub-Basin(s)           | FIRM Panel(s)              | Hazard Data       |
| Community                      | CID    | Sub-Dasin(3)           | ( )                        | Tiazaru Data      |
|                                |        |                        | 22109C0125E                |                   |
|                                |        |                        | 22109C0150E                |                   |
|                                |        |                        | 22109C0175E                |                   |
|                                |        |                        | 22109C0200E                |                   |
|                                |        |                        | 22109C0225E                |                   |
|                                |        |                        | 22109C0235E                |                   |
|                                |        |                        | 22109C0245E                |                   |
|                                |        |                        | 22109C0250E                |                   |
|                                |        |                        | 22109C0251E                |                   |
|                                |        |                        | 22109C0252E                |                   |
|                                |        |                        | 22109C0253E                |                   |
|                                |        |                        | 22109C0254E                |                   |
|                                |        |                        | 22109C0260E                |                   |
|                                |        |                        | 22109C0275E                |                   |
|                                |        |                        | 22109C0300E                |                   |
|                                |        |                        | 22109C0325E                |                   |
|                                |        |                        | 22109C0350E                |                   |
|                                |        |                        | 22109C0375E                |                   |
|                                |        |                        | 22109C0400E                |                   |
|                                |        |                        | 22109C0425E                |                   |
|                                |        |                        | 22109C0450E                |                   |
|                                |        |                        | 22109C0475E                |                   |
|                                |        | 6 08080101<br>08090302 | 22109C0500E                |                   |
| Terrebonne Parish,             | 225206 |                        | 22109C0525E                |                   |
| Consolidated Government        |        |                        | 22109C0550E                |                   |
|                                |        |                        | 22109C0575E                |                   |
|                                |        |                        | 22109C0600E                |                   |
|                                |        |                        | 22109C0625E                |                   |
|                                |        |                        | 22109C0650E                |                   |
|                                |        |                        | 22109C0675E<br>22109C0700E |                   |
|                                |        |                        | 22109C0700E                |                   |
|                                |        |                        | 22109C0723E                |                   |
|                                |        |                        | 22109C0750E                |                   |
|                                |        |                        | 22109C0800E                |                   |
|                                |        |                        | 22109C0825E                |                   |
|                                |        |                        | 22109C0850E                |                   |
|                                |        |                        | 22109C0875E                |                   |
|                                |        |                        | 22109C0900E <sup>1</sup>   |                   |
|                                |        |                        | 22109C0925E <sup>1</sup>   |                   |
|                                |        |                        | 22109C0950E                |                   |
|                                |        |                        | 22109C0975E                |                   |
|                                |        |                        | 22109C1000E                |                   |
|                                |        |                        | 22109C1025E <sup>1</sup>   |                   |
|                                |        |                        | 22109C1050E <sup>1</sup>   |                   |
|                                |        |                        | 22109C1075E <sup>1</sup>   |                   |
|                                |        |                        | 22109C1100E <sup>1</sup>   |                   |
|                                |        |                        | 22109C1125E <sup>1</sup>   |                   |
|                                |        |                        | 22109C1175E <sup>1</sup>   |                   |
| <sup>1</sup> Papel Net Printed | I      |                        |                            |                   |

# Table 1: Listing of NFIP Jurisdictions (continued)

<sup>1</sup> Panel Not Printed

#### 1.4 Considerations for using this Flood Insurance Study Report

The NFIP encourages State and local governments to implement sound floodplain management programs. To assist in this endeavor, each FIS Report provides floodplain data, which may include a combination of the following: 10-, 4-, 2-, 1-, and 0.2-percent annual chance flood elevations (the 1-percent-annual-chance flood elevation is also referred to as the Base Flood Elevation (BFE)); delineations of the 1-percent-annual-chance floodway. This information is presented on the FIRM and/or in many components of the FIS Report, including Flood Profiles, Floodway Data tables, Summary of Non-Coastal Stillwater Elevations tables, and Coastal Transect Parameters tables (not all components may be provided for a specific FIS).

This section presents important considerations for using the information contained in this FIS Report and the FIRM, including changes in format and content. Figures 1, 2, and 3 present information that applies to using the FIRM with the FIS Report.

• Part or all of this FIS Report may be revised and republished at any time. In addition, part of this FIS Report may be revised by a Letter of Map Revision (LOMR), which does not involve republication or redistribution of the FIS Report. Refer to Section 6.5 of this FIS Report for information about the process to revise the FIS Report and/or FIRM.

It is, therefore, the responsibility of the user to consult with community officials by contacting the community repository to obtain the most current FIS Report components. Communities participating in the NFIP have established repositories of flood hazard data for floodplain management and flood insurance purposes. Community map repository addresses are provided in Table 30, "Map Repositories," within this FIS Report.

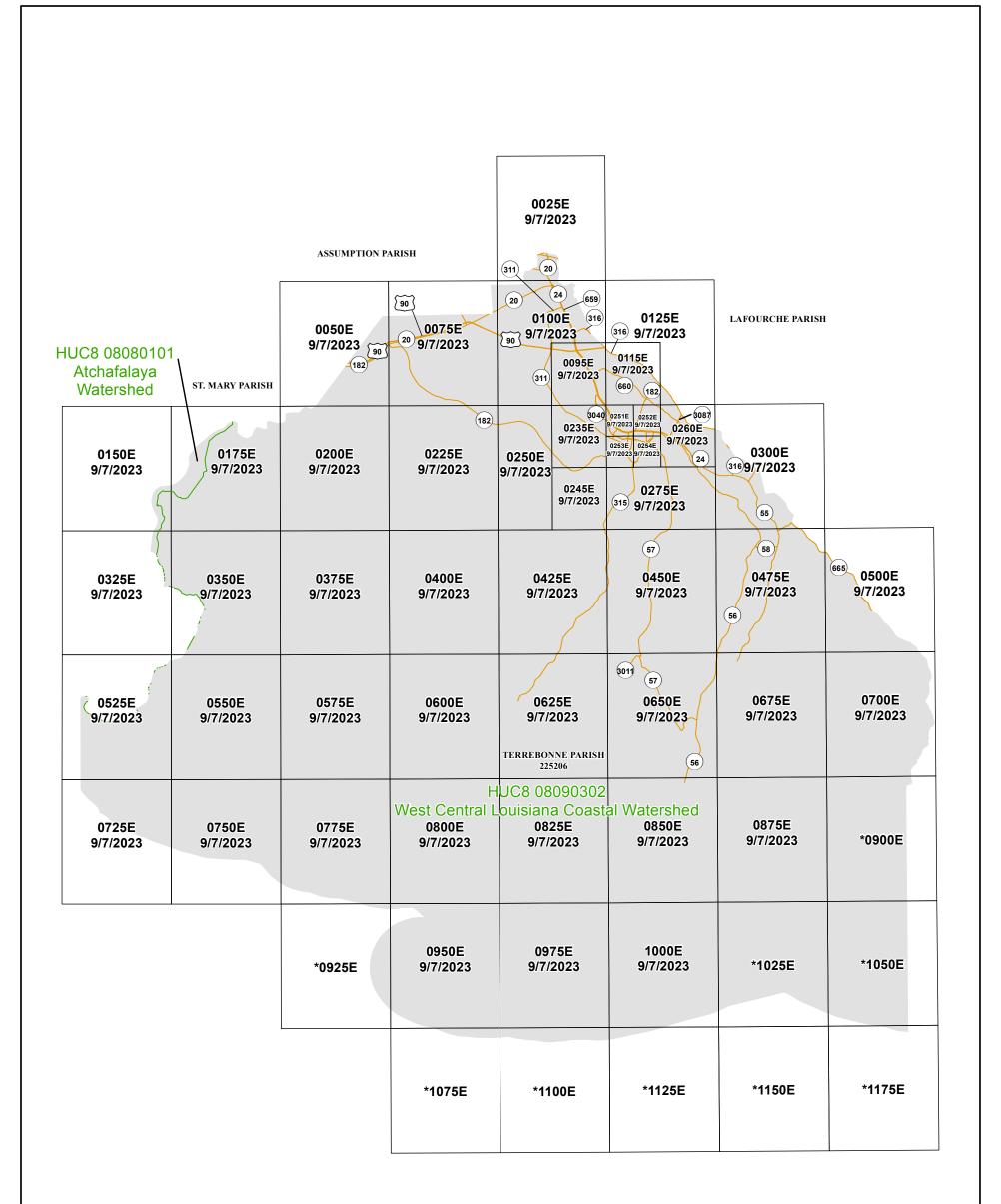
 New FIS Reports are frequently developed for multiple communities, such as entire counties. A countywide FIS Report incorporates previous FIS Reports for individual communities and the unincorporated area of the county (if not jurisdictional) into a single document and supersedes those documents for the purposes of the NFIP.

The initial Countywide FIS Report for Terrebonne Parish became effective on September 7, 2023 Refer to Table 27 for information about subsequent revisions to the FIRMs.

• Selected FIRM panels for the community may contain information (such as floodways and cross sections) that was previously shown separately on the corresponding Flood Boundary and Floodway Map (FBFM) panels. In addition, former flood hazard zone designations have been changed as follows:

| <u>Old Zone</u> | <u>New Zone</u> |
|-----------------|-----------------|
| A1 through A30  | AE              |
| V1 through V30  | VE              |
| В               | X (shaded)      |
| С               | X (unshaded)    |

 FEMA does not impose floodplain management requirements or special insurance ratings based on Limit of Moderate Wave Action (LiMWA) delineations at this time. The LiMWA represents the approximate landward limit of the 1.5-foot breaking wave. If the LiMWA is shown on the FIRM, it is being provided by FEMA as information only. For communities that do adopt Zone VE building standards in the area defined by the LiMWA, additional Community Rating System (CRS) credits are available. Refer to Section 2.5.4 for additional information about the LiMWA.


The CRS is a voluntary incentive program that recognizes and encourages community floodplain management activities that exceed the minimum NFIP requirements. Visit the FEMA Web site at <a href="http://www.fema.gov/flood-insurance/rules-legislation/community-rating-system">www.fema.gov/flood-insurance/rules-legislation/community-rating-system</a> or contact your appropriate FEMA Regional Office for more information about this program.

 Previous FIS Reports and FIRMs may have included levees that were accredited as reducing the risk associated with the 1-percent-annual-chance flood based on the information available and the mapping standards of the NFIP at that time. For FEMA to continue to accredit the identified levees, the levees must meet the criteria of the Code of Federal Regulations, Title 44, Section 65.10 (44 CFR 65.10), titled "Mapping of Areas Protected by Levee Systems."

Since the status of levees is subject to change at any time, the user should contact the appropriate agency for the latest information regarding levees presented in Table 8 of this FIS Report. For levees owned or operated by the U.S. Army Corps of Engineers (USACE), information may be obtained from the USACE National Levee Database (<u>nld.usace.army.mil</u>). For all other levees, the user is encouraged to contact the appropriate local community.

 FEMA has developed a *Guide to Flood Maps* (FEMA 258) and online tutorials to assist users in accessing the information contained on the FIRM. These include how to read panels and step-by-step instructions to obtain specific information. To obtain this guide and other assistance in using the FIRM, visit the FEMA Web site at www.fema.gov/flood-maps/tutorials.

The FIRM Index in Figure 1 shows the overall FIRM panel layout within Terrebonne Parish, and also displays the panel number and effective date for each FIRM panel in the county. Other information shown on the FIRM Index includes community boundaries, transportation features, watershed boundaries, and USGS HUC-8 codes.



|   | 1 inch = 35,000 feet |        |        | 1:420,000 |
|---|----------------------|--------|--------|-----------|
| Ň |                      |        |        | Feet      |
| N | 0                    | 17,500 | 35,000 | 70,000    |

Map Projection:

Lambert Conformal Conic State Plane Louisiana South Zone 1702; North American Datum 1983 Western Hemisphere; Vertical Datum: North American Vertical Datum of 1988

# THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING DOCUMENTATION ARE ALSO AVAILABLE IN DIGITAL FORMAT AT HTTPS://MSC.FEMA.GOV

SEE FLOOD INSURANCE STUDY FOR ADDITIONAL INFORMATION

\* PANEL NOT PRINTED - OPEN WATER AREA



#### NATIONAL FLOOD INSURANCE PROGRAM

FLOOD INSURANCE RATE MAP INDEX

TERREBONNE PARISH, LOUISIANA (All Jurisdictions)

PANELS PRINTED: 0025, 0050, 0075, 0095, 0100, 0115, 0125, 0150, 0175, 0200, 0225, 0235, 0245, 0250, 0251, 0252, 0253, 0254, 0260, 0275, 0300, 0325, 0350, 0375, 0400, 0425, 0450, 0475, 0500, 0525, 0550, 0575, 0600, 0625, 0650, 0675, 0700, 0725, 0750, 0775, 0800, 0825, 0850, 0875, 0950, 0975, 1000



Each FIRM panel may contain specific notes to the user that provide additional information regarding the flood hazard data shown on that map. However, the FIRM panel does not contain enough space to show all the notes that may be relevant in helping to better understand the information on the panel. Figure 2 contains the full list of these notes.

Figure 2: FIRM Notes to Users

# NOTES TO USERS

For information and questions about this map, available products associated with this FIRM including historic versions of this FIRM, how to order products, or the National Flood Insurance Program in general, please call the FEMA Mapping and Insurance eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Flood Map Service Center website at msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website. Users may determine the current map date for each FIRM panel by visiting the FEMA Flood Map Service Center website or by calling the FEMA Mapping and Insurance eXchange.

Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Flood Map Service Center at the number listed above.

For community and countywide map dates, refer to Table 27 in this FIS Report.

To determine if flood insurance is available in the community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

The map is for use in administering the NFIP. It may not identify all areas subject to flooding, particularly from local drainage sources of small size. Consult the community map repository to find updated or additional flood hazard information.

<u>BASE FLOOD ELEVATIONS</u>: For more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, consult the Flood Profiles and Floodway Data and/or Summary of Non-Coastal Stillwater Elevations tables within this FIS Report. Use the flood elevation data within the FIS Report in conjunction with the FIRM for construction and/or floodplain management.

Coastal Base Flood Elevations shown on the map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Coastal flood elevations are also provided in the Coastal Transect Parameters table in the FIS Report for this jurisdiction. Elevations shown in the Coastal Transect Parameters table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on the FIRM.

#### Figure 2: FIRM Notes to Users

<u>FLOODWAY INFORMATION</u>: Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the FIS Report for this jurisdiction.

<u>FLOOD CONTROL STRUCTURE INFORMATION</u>: Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 4.3 "Non-Levee Flood Protection Measures" of this FIS Report for information on flood control structures for this jurisdiction.

<u>PROJECTION INFORMATION</u>: The projection used in the preparation of the map was State Plane Lambert Conformal Conic, Louisiana South Zone 1702. The horizontal datum was the North American Datum of 1983 NAD83, GRS1980 spheroid. Differences in datum, spheroid, projection or State Plane zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of the FIRM.

<u>ELEVATION DATUM</u>: Flood elevations on the FIRM are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at www.ngs.noaa.gov.

Local vertical monuments may have been used to create the map. To obtain current monument information, please contact the appropriate local community listed in Table 30 of this FIS Report.

<u>BASE MAP INFORMATION</u>: Base map information shown on the FIRM was derived from digital orthophotography collected by the U.S. Department of Agriculture Farm Service Agency. This imagery was flown in 2019 and was produced with a 1-meter ground sample distance. Additional base map information was obtained from the Louisiana Department of Transportation and Development, the Terrebonne Parish Communications District, and the U.S. Bureau of Land Management. For information about base maps, refer to Section 6.2 "Base Map" in this FIS Report.

Corporate limits shown on the map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after the map was published, map users should contact appropriate community officials to verify current corporate limit locations.

#### NOTES FOR FIRM INDEX

<u>REVISIONS TO INDEX</u>: As new studies are performed and FIRM panels are updated within Terrebonne Parish, Louisiana, corresponding revisions to the FIRM Index will be incorporated within the FIS Report to reflect the effective dates of those panels. Please refer to Table 27 of this FIS Report to determine the most recent FIRM revision date for each community. The most recent FIRM panel effective date will correspond to the most recent index date.

#### Figure 2: FIRM Notes to Users

#### SPECIAL NOTES FOR SPECIFIC FIRM PANELS

This Notes to Users section was created specifically for Terrebonne Parish, Louisiana, effective September 7,2023

<u>LIMIT OF MODERATE WAVE ACTION</u>: Zone AE has been divided by a Limit of Moderate Wave Action (LiMWA). The LiMWA represents the approximate landward limit of the 1.5-foot breaking wave. The effects of wave hazards between Zone VE and the LiMWA (or between the shoreline and the LiMWA for areas where Zone VE is not identified) will be similar to, but less severe than, those in Zone VE.

<u>NON-ACCREDITED LEVEE SYSTEM</u>: This panel contains a levee system that has not been accredited and is therefore not recognized as reducing the 1-percentannual-chance flood hazard.

<u>COASTAL BARRIER RESOURCES SYSTEM (CBRS)</u>: areas and "otherwise protected areas" (OPAs) are no longer shown on this map panel, but still may be present in this com m unity. Current information on these areas is provided by the U.S. Fish & Wildlife Service (FWS). NFIP flood insurance is not available within CBRS areas for structures that are built or substantially im proved on or after the dates indicated by FWS. Users should reference the most up-to-date information provided by FWS to determine NFIP insurance eligibility. The official maps and additional information regarding CBRS areas are provided on the FWS website at: www.fws.gov/cbra. FEMA also includes the official boundaries from FWS on our interactive and dynamic flood maps available through the FEMA Map Service Center.

<u>FLOOD RISK REPORT</u>: A Flood Risk Report (FRR) may be available for many of the flooding sources and communities referenced in this FIS Report. The FRR is provided to increase public awareness of flood risk by helping communities identify the areas within their jurisdictions that have the greatest risks. Although non-regulatory, the information provided within the FRR can assist communities in assessing and evaluating mitigation opportunities to reduce these risks. It can also be used by communities developing or updating flood risk mitigation plans. These plans allow communities to identify and evaluate opportunities to reduce potential loss of life and property. However, the FRR is not intended to be the final authoritative source of all flood risk data for a project area; rather, it should be used with other data sources to paint a comprehensive picture of flood risk.

Each FIRM panel contains an abbreviated legend for the features shown on the maps. However, the FIRM panel does not contain enough space to show the legend for all map features. Figure 3 shows the full legend of all map features. Note that not all of these features may appear on the FIRM panels in Terrebonne Parish.

#### Figure 3: Map Legend for FIRM

**SPECIAL FLOOD HAZARD AREAS:** The 1% annual chance flood, also known as the base flood or 100-year flood, has a 1% chance of happening or being exceeded each year. Special Flood Hazard Areas are subject to flooding by the 1% annual chance flood. The Base Flood Elevation is the water surface elevation of the 1% annual chance flood. The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights. See note for specific types. If the floodway is too narrow to be shown, a note is shown.

Special Flood Hazard Areas subject to inundation by the 1% annual chance flood (Zones A, AE, AH, AO, AR, A99, V and VE)

- Zone A The flood insurance rate zone that corresponds to the 1% annual chance floodplains. No base (1% annual chance) flood elevations (BFEs) or depths are shown within this zone.
- Zone AE The flood insurance rate zone that corresponds to the 1% annual chance floodplains. Base flood elevations derived from the hydraulic analyses are shown within this zone.
- Zone AH The flood insurance rate zone that corresponds to the areas of 1% annual chance shallow flooding (usually areas of ponding) where average depths are between 1 and 3 feet. Whole-foot BFEs derived from the hydraulic analyses are shown at selected intervals within this zone.
- Zone AO The flood insurance rate zone that corresponds to the areas of 1% annual chance shallow flooding (usually sheet flow on sloping terrain) where average depths are between 1 and 3 feet. Average whole-foot depths derived from the hydraulic analyses are shown within this zone.
- Zone AR The flood insurance rate zone that corresponds to areas that were formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.
- Zone A99 The flood insurance rate zone that corresponds to areas of the 1% annual chance floodplain that will be protected by a Federal flood protection system where construction has reached specified statutory milestones. No base flood elevations or flood depths are shown within this zone.
  - Zone V The flood insurance rate zone that corresponds to the 1% annual chance coastal floodplains that have additional hazards associated with storm waves. Base flood elevations are not shown within this zone.
- Zone VE Zone VE is the flood insurance rate zone that corresponds to the 1% annual chance coastal floodplains that have additional hazards associated with storm waves. Base flood elevations derived from the coastal analyses are shown within this zone as static whole-foot elevations that apply throughout the zone.



Regulatory Floodway determined in Zone AE.

| OTHER AREAS OF FLO                            | OD HAZARD                                                                                                                                                                                                                                                                   |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | Shaded Zone X: Areas of 0.2% annual chance flood hazards and areas of 1% annual chance flood hazards with average depths of less than 1 foot or with drainage areas less than 1 square mile.                                                                                |
|                                               | Future Conditions 1% Annual Chance Flood Hazard – Zone X: The flood insurance rate zone that corresponds to the 1% annual chance floodplains that are determined based on future-conditions hydrology. No base flood elevations or flood depths are shown within this zone. |
|                                               | Area with Reduced Flood Risk due to Levee: Areas where an accredited levee, dike, or other flood control structure has reduced the flood risk from the 1% annual chance flood.                                                                                              |
|                                               | Area with Flood Risk due to Levee: Areas where a non-accredited levee,<br>dike, or other flood control structure is shown as providing protection to<br>less than the 1% annual chance flood.                                                                               |
| OTHER AREAS                                   |                                                                                                                                                                                                                                                                             |
|                                               | Zone D (Areas of Undetermined Flood Hazard): The flood insurance rate<br>zone that corresponds to unstudied areas where flood hazards are<br>undetermined, but possible.                                                                                                    |
| NO SCREEN                                     | Unshaded Zone X: Areas of minimal flood hazard.                                                                                                                                                                                                                             |
| FLOOD HAZARD AND (                            | OTHER BOUNDARY LINES                                                                                                                                                                                                                                                        |
| (ortho) (vector)                              | Flood Zone Boundary (white line on ortho-photography-based mapping;<br>gray line on vector-based mapping)                                                                                                                                                                   |
|                                               | Limit of Study                                                                                                                                                                                                                                                              |
|                                               | Jurisdiction Boundary                                                                                                                                                                                                                                                       |
| <b></b>                                       | Limit of Moderate Wave Action (LiMWA): Indicates the inland limit of the area affected by waves greater than 1.5 feet                                                                                                                                                       |
| GENERAL STRUCTURE                             | S                                                                                                                                                                                                                                                                           |
| Aqueduct<br>Channel<br>Culvert<br>Storm Sewer | Channel, Culvert, Aqueduct, or Storm Sewer                                                                                                                                                                                                                                  |
| Dam<br>Jetty<br>Weir                          | Dam, Jetty, Weir                                                                                                                                                                                                                                                            |
|                                               | Levee, Dike, or Floodwall                                                                                                                                                                                                                                                   |
| Bridge                                        | Bridge                                                                                                                                                                                                                                                                      |

# Figure 3: Map Legend for FIRM

| REFERENCE MARKERS                    |                                                                                                                                                                                                        |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22.0<br>●                            | River mile Markers                                                                                                                                                                                     |
| CROSS SECTION & TRA                  | ANSECT INFORMATION                                                                                                                                                                                     |
| ⟨ <b>B</b> ⟩ <u>20.2</u>             | Lettered Cross Section with Regulatory Water Surface Elevation (BFE)                                                                                                                                   |
| <u>(5280)</u> <u>21.1</u>            | Numbered Cross Section with Regulatory Water Surface Elevation (BFE)                                                                                                                                   |
| 17.5_                                | Unlettered Cross Section with Regulatory Water Surface Elevation (BFE)                                                                                                                                 |
| 8                                    | Coastal Transect                                                                                                                                                                                       |
|                                      | Profile Baseline: Indicates the modeled flow path of a stream and is shown on FIRM panels for all valid studies with profiles or otherwise established base flood elevation.                           |
|                                      | Coastal Transect Baseline: Used in the coastal flood hazard model to represent the 0.0-foot elevation contour and the starting point for the transect and the measuring point for the coastal mapping. |
| ~~~~ 513 ~~~~                        | Base Flood Elevation Line                                                                                                                                                                              |
| ZONE AE<br>(EL 16)                   | Static Base Flood Elevation value (shown under zone label)                                                                                                                                             |
| ZONE AO<br>(DEPTH 2)                 | Zone designation with Depth                                                                                                                                                                            |
| ZONE AO<br>(DEPTH 2)<br>(VEL 15 FPS) | Zone designation with Depth and Velocity                                                                                                                                                               |
| BASE MAP FEATURES                    | River, Stream or Other Hydrographic Feature                                                                                                                                                            |
| (234)                                | Interstate Highway                                                                                                                                                                                     |
| 234                                  | U.S. Highway                                                                                                                                                                                           |
| (234)                                | State Highway                                                                                                                                                                                          |
| 234                                  | County Highway                                                                                                                                                                                         |
| MAPLE LANE                           | Street, Road, Avenue Name, or Private Drive if shown on Flood Profile                                                                                                                                  |
| RAILROAD                             | Railroad                                                                                                                                                                                               |

# Figure 3: Map Legend for FIRM

# Figure 3: Map Legend for FIRM

|                                    | Horizontal Reference Grid Line                      |  |  |  |  |
|------------------------------------|-----------------------------------------------------|--|--|--|--|
| _                                  | Horizontal Reference Grid Ticks                     |  |  |  |  |
| +                                  | Secondary Grid Crosshairs                           |  |  |  |  |
| Land Grant                         | Name of Land Grant                                  |  |  |  |  |
| 7                                  | Section Number                                      |  |  |  |  |
| R. 43 W. T. 22 N.                  | Range, Township Number                              |  |  |  |  |
| <sup>42</sup> 76 <sup>000m</sup> E | Horizontal Reference Grid Coordinates (UTM)         |  |  |  |  |
| 365000 FT                          | Horizontal Reference Grid Coordinates (State Plane) |  |  |  |  |
| 80° 16' 52.5"                      | Corner Coordinates (Latitude, Longitude)            |  |  |  |  |

#### SECTION 2.0 – FLOODPLAIN MANAGEMENT APPLICATIONS

#### 2.1 Floodplain Boundaries

To provide a national standard without regional discrimination, the 1-percent-annualchance (100-year) flood has been adopted by FEMA as the base flood for floodplain management purposes. The 0.2-percent-annual-chance (500-year) flood is employed to indicate additional areas of flood hazard in the community.

Each flooding source included in the project scope has been studied and mapped using professional engineering and mapping methodologies that were agreed upon by FEMA and Terrebonne Parish as appropriate to the risk level. Flood risk is evaluated based on factors such as known flood hazards and projected impact on the built environment. Engineering analyses were performed for each studied flooding source to calculate its 1-percent-annual-chance flood elevations; elevations corresponding to other floods (e.g. 10-, 4-, 2-, 0.2-percent annual chance, etc.) may have also been computed for certain flooding sources. Engineering models and methods are described in detail in Section 5.0 of this FIS Report. The modeled elevations at cross sections were used to delineate the floodplain boundaries on the FIRM; between cross sections, the boundaries were interpolated using elevation data from various sources. More information on specific mapping methods is provided in Section 6.0 of this FIS Report.

Depending on the accuracy of available topographic data (Table 22), study methodologies employed (Section 5.0), and flood risk, certain flooding sources may be mapped to show both the 1-percent and 0.2-percent-annual-chance floodplain boundaries, regulatory water surface elevations (BFEs), and/or a regulatory floodway. Similarly, other flooding sources may be mapped to show only the 1-percent-annual-chance floodplain boundary on the FIRM, without published water surface elevations. In cases where the 1-percent and 0.2-percent-annual-chance floodplain boundaries are close together, only the 1-percent-annual-chance floodplain boundaries are used on the FIRM. Figure 3, "Map Legend for FIRM", describes the flood zones that are used on the FIRMs to account for the varying levels of flood risk that exist along flooding sources within the project area. Table 2 and Table 3 indicate the flood zone designations for each flooding source and each community within Terrebonne Parish, respectively.

Table 2, "Flooding Sources Included in this FIS Report," lists each flooding source, including its study limits, affected communities, mapped zone on the FIRM, and the completion date of its engineering analysis from which the flood elevations on the FIRM and in the FIS Report were derived. Descriptions and dates for the latest hydrologic and hydraulic analyses of the flooding sources are shown in Table 12. Floodplain boundaries for these flooding sources are shown on the FIRM (published separately) using the symbology described in Figure 3. On the map, the 1-percent-annual-chance floodplain corresponds to the SFHAs. The 0.2-percent-annual-chance floodplain shows areas that, although out of the regulatory floodplain, are still subject to flood hazards.

Small areas within the floodplain boundaries may lie above the flood elevations but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data. The procedures to remove these areas from the SFHA are described in Section 6.5 of this FIS Report.

Within this jurisdiction, there are one or more levees that have not been demonstrated by the communities or levee owners to meet the requirements of the Code of Federal Regulations, Title 44, Section 65.10 (44 CFR 65.10) as it relates to the levee's capacity to provide 1-percent-annual-chance flood protection. As such, the floodplain boundaries in this area are subject to change. Please refer to Section 4.4 of this FIS Report for more information on how this may affect the floodplain boundaries shown on this FIRM.

| Flooding Source | Community                                        | Downstream Limit            | Upstream Limit                                              | HUC-8 Sub-<br>Basin(s) | Length (mi)<br>(streams or<br>coastlines) | Area (mi <sup>2</sup> )<br>(estuaries<br>or ponding) | Floodway<br>(Y/N) | Zone<br>shown on<br>FIRM | Date of<br>Analysis |
|-----------------|--------------------------------------------------|-----------------------------|-------------------------------------------------------------|------------------------|-------------------------------------------|------------------------------------------------------|-------------------|--------------------------|---------------------|
| Caillou         | Terrebonne Parish,<br>Consolidated<br>Government | Pumping Station             | Approximately 200<br>feet upstream of<br>Merrill Street     | 08090302               | 3.6                                       |                                                      | Ν                 | AE                       | 2015                |
|                 | Terrebonne Parish,<br>Consolidated<br>Government | Entire Coastline            | Entire Coastline                                            | N/A                    | 104.8                                     |                                                      | Ν                 | AE, VE                   | 2010                |
| ,               | Terrebonne Parish,<br>Consolidated<br>Government |                             | Approximately 0.4<br>miles upstream of<br>State Highway 311 | 08090302               | 9.7                                       |                                                      | Ν                 | AE                       | 1979                |
|                 | Terrebonne Parish,<br>Consolidated<br>Government | Within Terrebonne<br>Parish | Within Terrebonne<br>Parish                                 | 08090302               |                                           | 25.2                                                 | Ν                 | A                        | 1979                |

# Table 2: Flooding Sources Included in this FIS Report

#### 2.2 Floodways

This section is not applicable to this Flood Risk Project.

#### Figure 4: Floodway Schematic

#### [Not Applicable to this Flood Risk Project]

#### 2.3 Base Flood Elevations

The hydraulic characteristics of flooding sources were analyzed to provide estimates of the elevations of floods of the selected recurrence intervals. The BFE is the elevation of the 1-percent-annual-chance flood. These BFEs are most commonly rounded to the whole foot, as shown on the FIRM, but in certain circumstances or locations they may be rounded to 0.1 foot. Cross section lines shown on the FIRM may also be labeled with the BFE rounded to 0.1 foot. Whole-foot BFEs derived from engineering analyses that apply to coastal areas, areas of ponding, or other static areas with little elevation change may also be shown at selected intervals on the FIRM.

BFEs are primarily intended for flood insurance rating purposes. Cross sections with BFEs shown on the FIRM correspond to the cross sections shown in the Floodway Data table and Flood Profiles in this FIS Report. For construction and/or floodplain management purposes, users are cautioned to use the flood elevation data presented in this FIS Report in conjunction with the data shown on the FIRM. For example, the user may use the FIRM to determine the stream station of a location of interest and then use the profile to determine the 1-percent annual chance elevation at that location. Because only selected cross sections may be shown on the FIRM for riverine areas, the profile should be used to obtain the flood elevation between mapped cross sections. Additionally, for riverine areas, whole-foot elevations shown on the FIRM may not exactly reflect the elevations derived from the hydraulic analyses; therefore, elevations obtained from the profile may more accurately reflect the results of the hydraulic analysis.

#### 2.4 Non-Encroachment Zones

This section is not applicable to this Flood Risk Project.

#### 2.5 Coastal Flood Hazard Areas

For most areas along rivers, streams, and small lakes, BFEs and floodplain boundaries are based on the amount of water expected to enter the area during a 1-percent-annualchance flood and the geometry of the floodplain. Floods in these areas are typically caused by storm events. However, for areas on or near ocean coasts, large rivers, or large bodies of water, BFE and floodplain boundaries may need to be based on additional components, including storm surges and waves.

Coastal flooding sources that are included in this Flood Risk Project are shown in Table 2.

#### 2.5.1 Water Elevations and the Effects of Waves

Specific terminology is used in coastal analyses to indicate which components have been included in evaluating flood hazards.

The stillwater elevation (SWEL or still water level) is the surface of the water resulting from astronomical tides, storm surge, and freshwater inputs, but excluding wave setup contribution or the effects of waves.

- Astronomical tides are periodic rises and falls in large bodies of water caused by the rotation of the earth and by the gravitational forces exerted by the earth, moon and sun.
- Storm surge is the additional water depth that occurs during large storm events. These events can bring air pressure changes and strong winds that force water up against the shore.
- *Freshwater inputs* include rainfall that falls directly on the body of water, runoff from surfaces and overland flow, and inputs from rivers.

The 1-percent-annual-chance stillwater elevation is the stillwater elevation that has been calculated for a storm surge from a 1-percent-annual-chance storm. The 1-percent-annual-chance storm surge can be determined from analyses of tidal gage records, statistical study of regional historical storms, or other modeling approaches. Stillwater elevations for storms of other frequencies can be developed using similar approaches.

The total stillwater elevation (also referred to as the mean water level) is the stillwater elevation plus wave setup contribution but excluding the effects of waves.

• *Wave setup* is the increase in stillwater elevation at the shoreline caused by the reduction of waves in shallow water. It occurs as breaking wave momentum is transferred to the water column.

Like the stillwater elevation, the total stillwater elevation is based on a storm of a particular frequency, such as the 1-percent-annual-chance storm. Wave setup is typically estimated using standard engineering practices or calculated using models, since tidal gages are often sited in areas sheltered from wave action and do not capture this information.

Coastal analyses may examine the effects of overland waves by analyzing storminduced erosion, overland wave propagation, wave runup, and/or wave overtopping.

- Storm-induced erosion is the modification of existing topography by erosion caused by a specific storm event, as opposed to general erosion that occurs at a more constant rate.
- Overland wave propagation describes the combined effects of variation in ground elevation, vegetation, and physical features on wave characteristics as waves move onshore.
- *Wave runup* is the uprush of water from wave action on a shore barrier. It is a function of the roughness and geometry of the shoreline at the point where the stillwater elevation intersects the land.

• *Wave overtopping* refers to wave runup that occurs when waves pass over the crest of a barrier.

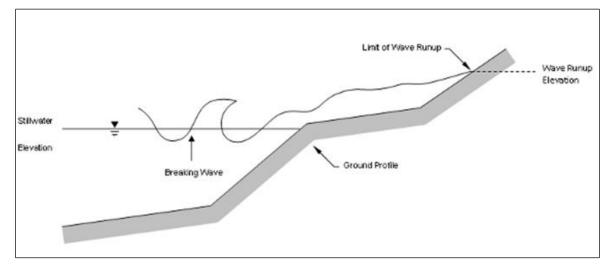



Figure 5: Wave Runup Transect Schematic

#### 2.5.2 Floodplain Boundaries and BFEs for Coastal Areas

For coastal communities along the Atlantic and Pacific Oceans, the Gulf of Mexico, the Great Lakes, and the Caribbean Sea, flood hazards must take into account how storm surges, waves, and extreme tides interact with factors such as topography and vegetation. Storm surge and waves must also be considered in assessing flood risk for certain communities on rivers or large inland bodies of water.

Beyond areas that are affected by waves and tides, coastal communities can also have riverine floodplains with designated floodways, as described in previous sections.

#### **Floodplain Boundaries**

In many coastal areas, storm surge is the principle component of flooding. The extent of the 1-percent-annual-chance floodplain in these areas is derived from the total stillwater elevation (stillwater elevation including storm surge plus wave setup) for the 1-percent-annual-chance storm. The methods that were used for calculation of total stillwater elevations for coastal areas are described in Section 5.3 of this FIS Report. Location of total stillwater elevations for coastal areas are shown in Figure 8, "1% Annual Chance Total Stillwater Levels for Coastal Areas."

In some areas, the 1-percent-annual-chance floodplain is determined based on the limit of wave runup or wave overtopping for the 1-percent-annual-chance storm surge. The methods that were used for calculation of wave hazards are described in Section 5.3 of this FIS Report.

Table 25 presents the types of coastal analyses that were used in mapping the 1-percent-annual-chance floodplain in coastal areas.

#### Coastal BFEs

Coastal BFEs are calculated as the total stillwater elevation (stillwater elevation including storm surge plus wave setup) for the 1-percent-annual-chance storm plus the additional flood hazard from overland wave effects (storm-induced erosion, overland wave propagation, wave runup and wave overtopping).

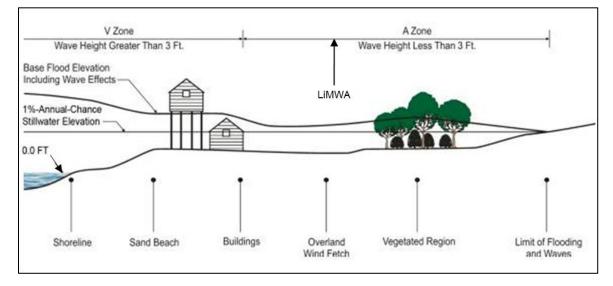
Where they apply, coastal BFEs are calculated along transects extending from offshore to the limit of coastal flooding onshore. Results of these analyses are accurate until local topography, vegetation, or development type and density within the community undergoes major changes.

Parameters that were included in calculating coastal BFEs for each transect included in this FIS Report are presented in Table 16, "Coastal Transect Parameters." The locations of transects are shown in Figure 9, "Transect Location Map." More detailed information about the methods used in coastal analyses and the results of intermediate steps in the coastal analyses are presented in Section 5.3 of this FIS Report. Additional information on specific mapping methods is provided in Section 6.4 of this FIS Report.

#### 2.5.3 Coastal High Hazard Areas

Certain areas along the open coast and other areas may have higher risk of experiencing structural damage caused by wave action and/or high-velocity water during the 1-percent-annual-chance flood. These areas will be identified on the FIRM as Coastal High Hazard Areas.

- Coastal High Hazard Area (CHHA) is a SFHA extending from offshore to the inland limit of the primary frontal dune (PFD) or any other area subject to damages caused by wave action and/or high-velocity water during the 1-percent-annual-chance flood.
- *Primary Frontal Dune (PFD)* is a continuous or nearly continuous mound or ridge of sand with relatively steep slopes immediately landward and adjacent to the beach. The PFD is subject to erosion and overtopping from high tides and waves during major coastal storms.


CHHAs are designated as "V" zones (for "velocity wave zones") and are subject to more stringent regulatory requirements and a different flood insurance rate structure. The areas of greatest risk are shown as VE on the FIRM. Zone VE is further subdivided into elevation zones and shown with BFEs on the FIRM.

The landward limit of the PFD occurs at a point where there is a distinct change from a relatively steep slope to a relatively mild slope; this point represents the landward extension of Zone VE. Areas of lower risk in the CHHA are designated with Zone V on the FIRM. More detailed information about the identification and designation of Zone VE is presented in Section 6.4 of this FIS Report.

Areas that are not within the CHHA but are SFHAs may still be impacted by coastal flooding and damaging waves; these areas are shown as "A" zones on the FIRM.

Figure 6, "Coastal Transect Schematic," illustrates the relationship between the base flood elevation, the 1-percent-annual-chance stillwater elevation, and the ground profile

as well as the location of the Zone VE and Zone AE areas in an area without a PFD subject to overland wave propagation. This figure also illustrates energy dissipation and regeneration of a wave as it moves inland.



#### Figure 6: Coastal Transect Schematic

Methods used in coastal analyses in this Flood Risk Project are presented in Section 5.3 and mapping methods are provided in Section 6.4 of this FIS Report.

Coastal floodplains are shown on the FIRM using the symbology described in Figure 3, "Map Legend for FIRM." In many cases, the BFE on the FIRM is higher than the stillwater elevations shown in Table 16 due to the presence of wave effects. The higher elevation should be used for construction and/or floodplain management purposes.

#### 2.5.4 Limit of Moderate Wave Action

Laboratory tests and field investigations have shown that wave heights as little as 1.5 feet can cause damage to and failure of typical Zone AE building construction. Wood-frame, light gage steel, or masonry walls on shallow footings or slabs are subject to damage when exposed to waves less than 3 feet in height. Other flood hazards associated with coastal waves (floating debris, high velocity flow, erosion, and scour) can also damage Zone AE construction.

Therefore, a LiMWA boundary may be shown on the FIRM as an informational layer to assist coastal communities in safe rebuilding practices. The LiMWA represents the approximate landward limit of the 1.5-foot breaking wave. The location of the LiMWA relative to Zone VE and Zone AE is shown in Figure 6.

The effects of wave hazards in Zone AE between Zone VE (or the shoreline where Zone VE is not identified) and the limit of the LiMWA boundary are similar to, but less severe than, those in Zone VE where 3-foot or greater breaking waves are projected to occur during the 1-percent-annual-chance flooding event. Communities are therefore encouraged to adopt and enforce more stringent floodplain management requirements

than the minimum NFIP requirements in the LiMWA. The NFIP Community Rating System provides credits for these actions.

#### SECTION 3.0 – INSURANCE APPLICATIONS

#### 3.1 National Flood Insurance Program Insurance Zones

For flood insurance applications, the FIRM designates flood insurance rate zones as described in Figure 3, "Map Legend for FIRM." Flood insurance zone designations are assigned to flooding sources based on the results of the hydraulic or coastal analyses. Insurance agents use the zones shown on the FIRM and depths and base flood elevations in this FIS Report in conjunction with information on structures and their contents to assign premium rates for flood insurance policies.

The 1-percent-annual-chance floodplain boundary corresponds to the boundary of the areas of special flood hazards (e.g. Zones A, AE, V, VE, etc.), and the 0.2-percent-annual-chance floodplain boundary corresponds to the boundary of areas of additional flood hazards.

Table 3 lists the flood insurance zones in Terrebonne Parish.

#### Table 3: Flood Zone Designations by Community

| Community                                  | Flood Zone(s)    |
|--------------------------------------------|------------------|
| Terrebonne Parish, Consolidated Government | A, AE, AH, VE, X |

#### **SECTION 4.0 – AREA STUDIED**

#### 4.1 Basin Description

Table 4 contains a description of the characteristics of the HUC-8 sub-basins within which each community falls. The table includes the main flooding sources within each basin, a brief description of the basin, and its drainage area.

| HUC-8<br>Sub-Basin<br>Name           | HUC-8<br>Sub-Basin<br>Number | Primary<br>Flooding<br>Source | Description of Affected Area              | Drainage Area<br>(square miles) |
|--------------------------------------|------------------------------|-------------------------------|-------------------------------------------|---------------------------------|
| Atchafalaya                          | 08080101                     | Atchafalaya<br>River          | Coastal subbasin along the Gulf of Mexico | 3,090                           |
| West Central<br>Louisiana<br>Coastal | 08090302                     | Gulf of<br>Mexico             | Coastal subbasin along the Gulf of Mexico | 1,992                           |

#### 4.2 Principal Flood Problems

Table 5 contains a description of the principal flood problems that have been noted for Terrebonne Parish by flooding source.

| Flooding<br>Source        | Description of Flood Problems                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bayou<br>Chauvin          | Localized flooding may occur along the flood plains of Bayou Chauvin.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bayou<br>Grand<br>Caillou | Localized flooding may occur along the flood plains of Bayou Grand Caillou.                                                                                                                                                                                                                                                                                                                                                                                                           |
| Gulf of<br>Mexico         | The past history of flooding within the City of Houma indicates that flooding may occur during any season of the year, but would most likely occur during the spring and fall months, when strong southerly winds or tropical storms cause high tides in the Gulf of Mexico.<br>The low-lying unprotected areas of the City of Houma are subject to periodic flooding caused by hurricanes and tropical storms, or by rainfall runoff aggravated by high tides in the Gulf of Mexico. |

#### **Table 5: Principal Flood Problems**

Table 6 contains information about historic flood elevations in the communities within Terrebonne Parish.

| Flooding<br>Source       | Location                                      | Historic<br>Peak<br>(Feet<br>NAVD8<br>8) | Event<br>Date | Approximat<br>e<br>Recurrence<br>Interval<br>(years) | Source of<br>Data        |
|--------------------------|-----------------------------------------------|------------------------------------------|---------------|------------------------------------------------------|--------------------------|
| Intracoastal<br>Waterway | Terrebonne Parish,<br>Consolidated Government | 3.5                                      | 1971          | 20                                                   | NRCS high water marks    |
| Intracoastal<br>Waterway | Terrebonne Parish,<br>Consolidated Government | 4.0                                      | 1973          | 60                                                   | NRCS high water marks    |
| Intracoastal<br>Waterway | Terrebonne Parish,<br>Consolidated Government | 3.8                                      | 1974          | 20                                                   | NRCS high water marks    |
| Intracoastal<br>Waterway | Terrebonne Parish,<br>Consolidated Government | 4.1                                      | 1975          | 50                                                   | NRCS high<br>water marks |
| Intracoastal<br>Waterway | Terrebonne Parish,<br>Consolidated Government | 3.3                                      | 1976          | 20                                                   | NRCS high<br>water marks |
| Intracoastal<br>Waterway | Terrebonne Parish,<br>Consolidated Government | 3.8                                      | 1977          | 20                                                   | NRCS high<br>water marks |

**Table 6: Historic Flooding Elevations** 

#### 4.3 Non-Levee Flood Protection Measures

Table 7 contains information about non-levee flood protection measures within Terrebonne Parish such as dams, jetties, and or dikes. Levees are addressed in Section 4.4 of this FIS Report.

| Flooding<br>Source   | Structure<br>Name | Type of<br>Measure | Location                                         | Description of Measure                                                                                                                                              |
|----------------------|-------------------|--------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All flood<br>sources | N/A               | Pump<br>station    | Terrebonne Parish,<br>Consolidated<br>Government | Pumped drainage of<br>developed or developing<br>areas, with a low-lying portion<br>of each protected area<br>designated for temporary<br>storage of excess runoff. |

**Table 7: Non-Levee Flood Protection Measures** 

#### 4.4 Levees

For purposes of the NFIP, FEMA only recognizes levee systems that meet, and continue to meet, minimum design, operation, and maintenance standards that are consistent with comprehensive floodplain management criteria. The Code of Federal Regulations, Title 44, Section 65.10 (44 CFR 65.10) describes the information needed for FEMA to determine if a levee system reduces the risk from the 1-percent-annual-chance flood. This information must be supplied to FEMA by the community or other party when a flood risk study or restudy is conducted, when FIRMs are revised, or upon FEMA request. FEMA reviews the information for the purpose of establishing the appropriate FIRM flood zone.

Levee systems that are determined to reduce the risk from the 1-percent-annual-chance flood are accredited by FEMA. FEMA can also grant provisional accreditation to a levee system that was previously accredited on an effective FIRM and for which FEMA is awaiting data and/or documentation to demonstrate compliance with Section 65.10. These levee systems are referred to as Provisionally Accredited Levees, or PALs. Provisional accreditation provides communities and levee owners with a specified timeframe to obtain the necessary data to confirm the levee's certification status. Accredited levee systems and PALs are shown on the FIRM using the symbology shown in Figure 3 and in Table 8. If the required information for a PAL is not submitted within the required timeframe, or if information indicates that a levee system no longer meets Section 65.10, FEMA will de-accredit the levee system and issue an effective FIRM showing the levee-impacted area as a SFHA.

FEMA coordinates its programs with USACE, who may inspect, maintain, and repair levee systems. The USACE has authority under Public Law 84-99 to supplement local efforts to repair flood control projects that are damaged by floods. Like FEMA, the USACE provides a program to allow public sponsors or operators to address levee system maintenance deficiencies. Failure to do so within the required timeframe results in the levee system being placed in an inactive status in the USACE Rehabilitation and Inspection Program. Levee systems in an inactive status are ineligible for rehabilitation assistance under Public Law 84-99.

FEMA coordinated with the USACE, the local communities, and other organizations to compile a list of levees that exist within Terrebonne Parish. Table 8, "Levees," lists all accredited levees, PALs, and de-accredited levees shown on the FIRM for this FIS Report. Other categories of levees may also be included in the table. The Levee ID shown in this table may not match numbers based on other identification systems that

were listed in previous FIS Reports. Levees identified as PALs in the table are labeled on the FIRM to indicate their provisional status.

Please note that the information presented in Table 8 is subject to change at any time. For that reason, the latest information regarding any USACE structure presented in the table should be obtained by contacting USACE and accessing the USACE National Levee Database. For levees owned and/or operated by someone other than the USACE, contact the local community shown in Table 30.

#### Table 8: Levees

| Community                                        | Flooding Source          | Levee<br>Location | Levee Owner                                      | USACE<br>Levee | Levee ID   | Covered<br>Under PL84-<br>99 Program? | FIRM<br>Panel(s)           |
|--------------------------------------------------|--------------------------|-------------------|--------------------------------------------------|----------------|------------|---------------------------------------|----------------------------|
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico           | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255042 | No                                    | 22109C0253E<br>22109C0254E |
| Terrebonne Parish,<br>Consolidated<br>Government | Intracoastal<br>Waterway | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255039 | No                                    | 22109C0252E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico           | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255035 | No                                    | 22109C0235E<br>22109C0250E |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico           | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255036 | No                                    | 22109C0235E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico           | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255040 | No                                    | 22109C0251E<br>22109C0252E |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico           | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255041 | No                                    | 22109C0254E<br>22109C0260E |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico           | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255054 | No                                    | 22109C0275E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Atchafalaya River        | Left<br>Bank      | Terrebonne Levee<br>and Conservation<br>District | No             | 4404000561 | No                                    | 22109C0175E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico           | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255003 | No                                    | 22109C0425E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico           | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255004 | No                                    | 22109C0425E<br>22109C0625E |

| Community                                        | Flooding Source | Levee<br>Location | Levee Owner                                      | USACE<br>Levee | Levee ID   | Covered<br>Under PL84-<br>99 Program? | FIRM<br>Panel(s)                          |
|--------------------------------------------------|-----------------|-------------------|--------------------------------------------------|----------------|------------|---------------------------------------|-------------------------------------------|
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255005 | No                                    | 22109C0425E<br>22109C0625E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255006 | No                                    | 22109C0650E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255007 | No                                    | 22109C0275E<br>22109C0300E<br>22109C0475E |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255008 | No                                    | 22109C0475E<br>22109C0500E<br>22109C0675E |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255009 | No                                    | 22109C0500E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255011 | No                                    | 22109C0500E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255014 | No                                    | 22109C0425E<br>22109C0450E<br>22109C0650E |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255015 | No                                    | 22109C0650E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255016 | No                                    | 22109C0650E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255017 | No                                    | 22109C0650E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255018 | No                                    | 22109C0650E                               |

| Community                                        | Flooding Source | Levee<br>Location | Levee Owner                                      | USACE<br>Levee | Levee ID   | Covered<br>Under PL84-<br>99 Program? | FIRM<br>Panel(s)           |
|--------------------------------------------------|-----------------|-------------------|--------------------------------------------------|----------------|------------|---------------------------------------|----------------------------|
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255019 | No                                    | 22109C0650E<br>22109C0675E |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255020 | No                                    | 22109C0475E<br>22109C0500E |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255021 | No                                    | 22109C0500E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255022 | No                                    | 22109C0075E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255023 | No                                    | 22109C0075E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255024 | No                                    | 22109C0075E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255025 | No                                    | 22109C0075E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255026 | No                                    | 22109C0075E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255027 | No                                    | 22109C0075E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255028 | No                                    | 22109C0075E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255029 | No                                    | 22109C0075E                |

| Community                                        | Flooding Source | Levee<br>Location | Levee Owner                                      | USACE<br>Levee | Levee ID   | Covered<br>Under PL84-<br>99 Program? | FIRM<br>Panel(s)           |
|--------------------------------------------------|-----------------|-------------------|--------------------------------------------------|----------------|------------|---------------------------------------|----------------------------|
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255030 | No                                    | 22109C0075E<br>22109C0100E |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255031 | No                                    | 22109C0075E<br>22109C0225E |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255032 | No                                    | 22109C0100E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255037 | No                                    | 22109C0115E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255038 | No                                    | 22109C0252E<br>22109C0260E |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255043 | No                                    | 22109C0275E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255044 | No                                    | 22109C0275E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255045 | No                                    | 22109C0450E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255046 | No                                    | 22109C0425E<br>22109C0450E |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255047 | No                                    | 22109C0450E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255048 | No                                    | 22109C0450E                |

| Community                                        | Flooding Source | Levee<br>Location | Levee Owner                                      | USACE<br>Levee | Levee ID   | Covered<br>Under PL84-<br>99 Program? | FIRM<br>Panel(s)                          |
|--------------------------------------------------|-----------------|-------------------|--------------------------------------------------|----------------|------------|---------------------------------------|-------------------------------------------|
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255049 | No                                    | 22109C0450E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255050 | No                                    | 22109C0650E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255051 | No                                    | 22109C0650E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255052 | No                                    | 22109C0475E<br>22109C0650E<br>22109C0675E |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255053 | No                                    | 22109C0475E<br>22109C0675E                |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255055 | No                                    | 22109C0275E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255056 | No                                    | 22109C0275E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255057 | No                                    | 22109C0475E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255058 | No                                    | 22109C0475E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255059 | No                                    | 22109C0500E                               |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255060 | No                                    | 22109C0475E<br>22109C0500E                |

| Community                                        | Flooding Source | Levee<br>Location | Levee Owner                                      | USACE<br>Levee | Levee ID     | Covered<br>Under PL84-<br>99 Program? | FIRM<br>Panel(s)                                                                                                                                   |
|--------------------------------------------------|-----------------|-------------------|--------------------------------------------------|----------------|--------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604995014   | No                                    | 22109C0115E                                                                                                                                        |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604995017   | No                                    | 22109C0260E                                                                                                                                        |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 300004009350 | No                                    | 22109C0275E                                                                                                                                        |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 300004009355 | No                                    | 22109C0450E                                                                                                                                        |
| Terrebonne Parish,<br>Consolidated<br>Government | Gulf of Mexico  | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | *            | No                                    | 22109C0050E<br>22109C0075E<br>22109C0225E<br>22109C0235E<br>22109C0245E<br>22109C0250E<br>22109C0275E<br>22109C0425E<br>22109C0425E<br>22109C0450E |
| Terrebonne Parish,<br>Consolidated<br>Government | Ouiski Bayou    | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255033   | No                                    | 22109C0095E<br>22109C0100E<br>22109C0235E                                                                                                          |
| Terrebonne Parish,<br>Consolidated<br>Government | Ouiski Bayou    | *                 | Terrebonne Levee<br>and Conservation<br>District | No             | 1604255034   | No                                    | 22109C0095E                                                                                                                                        |

\*Data not available

#### **SECTION 5.0 – ENGINEERING METHODS**

For the flooding sources in the community, standard hydrologic and hydraulic study methods were used to determine the flood hazard data required for this study. Flood events of a magnitude that are expected to be equaled or exceeded at least once on the average during any 10-, 25-, 50-, 100-, or 500-year period (recurrence interval) have been selected as having special significance for floodplain management and for flood insurance rates. These events, commonly termed the 10-, 25-, 50-, 100-, and 500-year floods, have a 10-, 4-, 2-, 1-, and 0.2-percent-annual-chance, respectively, of being equaled or exceeded during any year.

Although the recurrence interval represents the long-term, average period between floods of a specific magnitude, rare floods could occur at short intervals or even within the same year. The risk of experiencing a rare flood increases when periods greater than 1 year are considered. For example, the risk of having a flood that equals or exceeds the 100-year flood (1-percent chance of annual exceedance) during the term of a 30-year mortgage is approximately 26 percent (about 3 in 10); for any 90-year period, the risk increases to approximately 60 percent (6 in 10). The analyses reported herein reflect flooding potentials based on conditions existing in the community at the time of completion of this study. Maps and flood elevations will be amended periodically to reflect future changes.

#### 5.1 Hydrologic Analyses

Hydrologic analyses were carried out to establish the peak elevation-frequency relationships for floods of the selected recurrence intervals for each flooding source studied. Hydrologic analyses are typically performed at the watershed level. Depending on factors such as watershed size and shape, land use and urbanization, and natural or man-made storage, various models or methodologies may be applied. A summary of the hydrologic methods applied to develop the discharges used in the hydraulic analyses for each stream is provided in Table 12. Greater detail (including assumptions, analysis, and results) is available in the archived project documentation.

|                        |                                            | Drainage                  |                        | P                   | eak Discharge (cf      | s)                     |                            |
|------------------------|--------------------------------------------|---------------------------|------------------------|---------------------|------------------------|------------------------|----------------------------|
| Flooding Source        | Location                                   | Area<br>(Square<br>Miles) | 10% Annual<br>Chance   | 4% Annual<br>Chance | 2% Annual<br>Chance    | 1% Annual<br>Chance    | 0.2% Annual<br>Chance      |
| Bayou Grand<br>Caillou | Pumping Station near<br>Grand Caillou Road | 0.84                      | 610 / 600 <sup>1</sup> | *                   | 790 / 760 <sup>1</sup> | 890 / 860 <sup>1</sup> | 1,070 / 1,010 <sup>1</sup> |
| Bayou Grand<br>Caillou | Grand Caillou Road<br>(Upper Crossing)     | 0.64                      | 500 / 480 <sup>1</sup> | *                   | 650 / 590 <sup>1</sup> | 730 / 650 <sup>1</sup> | 870 / 760 <sup>1</sup>     |
| Bayou Grand<br>Caillou | Oaklawn Drive                              | 0.37                      | 370 / 340 <sup>1</sup> | *                   | 460 / 380 <sup>1</sup> | 540 / 430 <sup>1</sup> | 670 / 490 <sup>1</sup>     |
| Bayou Grand<br>Caillou | Hialeah Avenue                             | 0.21                      | 280                    | *                   | 350                    | 380                    | 460                        |
| Bayou Grand<br>Caillou | Jane Avenue                                | 0.13                      | 210                    | *                   | 260                    | 290                    | 360                        |
| Bayou Grand<br>Caillou | Cleveland Street                           | 0.05                      | 130                    | *                   | 160                    | 190                    | 220                        |
| Ouiski Bayou           | Confluence with Little<br>Bayou Black      | 15.10                     | 350 <sup>2</sup>       | *                   | 570 <sup>2</sup>       | 710 <sup>2</sup>       | 1,080 <sup>2</sup>         |
| Ouiski Bayou           | Station 50+00                              | 14.00                     | 2,170 <sup>2</sup>     | *                   | 3,010 <sup>2</sup>     | 3,450 <sup>2</sup>     | 4,300 <sup>2</sup>         |
| Ouiski Bayou           | Station 244+00                             | 6.89                      | 1,850 <sup>3</sup>     | *                   | 2,500 <sup>3</sup>     | 2,850 <sup>3</sup>     | 3,540 <sup>3</sup>         |
| Ouiski Bayou           | Station 445+00                             | 2.76                      | 1,350 <sup>3</sup>     | *                   | 1,760 <sup>3</sup>     | 1,970 <sup>3</sup>     | 2,370 <sup>3</sup>         |
| Ouiski Bayou           | Station 518+00                             | 1.28                      | 870 <sup>3</sup>       | *                   | 1,040 <sup>3</sup>     | 1,160 <sup>3</sup>     | 1,270 <sup>3</sup>         |
| Ouiski Bayou           | Station 530+00                             | 1.13                      | 1,300 <sup>3</sup>     | *                   | 1,640 <sup>3</sup>     | 1,820 <sup>3</sup>     | 2,160 <sup>3</sup>         |

# Table 9: Summary of Discharges

\*Not calculated for this Flood Risk Project <sup>1</sup>Peak discharge adjusted for interbasin flow <sup>2</sup>Routed flows from Ouiski Bayou storage area (above Bayou Cane) <sup>3</sup>Routed flows from storage areas upstream of Louisiana Highway 20 embankment

# Figure 7: Frequency Discharge-Drainage Area Curves [Not Applicable to this Flood Risk Project]

# Table 10: Summary of Non-Coastal Stillwater Elevations[Not Applicable to this Flood Risk Project]

# Table 11: Stream Gage Information used to Determine Discharges[Not Applicable for this Flood Risk Project]

### 5.2 Hydraulic Analyses

Analyses of the hydraulic characteristics of flooding from the sources studied were carried out to provide estimates of the elevations of floods of the selected recurrence intervals. Base flood elevations on the FIRM represent the elevations shown on the Flood Profiles and in the Floodway Data tables in the FIS Report. Rounded whole-foot elevations may be shown on the FIRM in coastal areas, areas of ponding, and other areas with static base flood elevations. These whole-foot elevations may not exactly reflect the elevations derived from the hydraulic analyses. Flood elevations shown on the FIRM are primarily intended for flood insurance rating purposes. For construction and/or floodplain management purposes, users are cautioned to use the flood elevation data presented in this FIS Report in conjunction with the data shown on the FIRM.

A summary of the methods used in hydraulic analyses performed for this project is provided in Table 12. Roughness coefficients are provided in Table 13. Roughness coefficients are values representing the frictional resistance water experiences when passing overland or through a channel. They are used in the calculations to determine water surface elevations. Greater detail (including assumptions, analysis, and results) is available in the archived project documentation.

| Flooding Source        | Study Limits<br>Downstream Limit      | Study Limits<br>Upstream Limit                              | Hydrologic<br>Model or<br>Method Used | Hydraulic<br>Model or<br>Method Used | Date<br>Analyses<br>Completed | Flood<br>Zone on<br>FIRM | Special Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|---------------------------------------|-------------------------------------------------------------|---------------------------------------|--------------------------------------|-------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bayou Grand<br>Caillou | Pumping Station                       | Approximately 200<br>feet upstream of<br>Merrill Street     | *                                     | Combined<br>Probability<br>Analysis  | 2015                          | AE                       | Combined probability analysis was calculated along Bayou Grand Caillou.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ouiski Bayou           | Confluence with<br>Little Bayou Black | Approximately 0.4<br>miles upstream of<br>State Highway 311 | HEC-1                                 | HEC-2                                | 1979                          | AE                       | The HEC-1 computer model (USACE 1966)<br>was used to route hydrographs through<br>storage in the Ouiski Bayou Basin.<br>Backwater computations were made using the<br>HEC-2 backwater model (USACE 1961) along<br>Ouiski Bayou from Little Bayou Black to<br>Louisiana Highway 311 (near Schriever).<br>The flood hazard information was redelineated<br>based on newly developed topographic data in<br>the initial countywide FIS. No new flood<br>hazard analysis was performed. |
| Zone A Wetlands        | Within Terrebonne<br>Parish           | Within Terrebonne<br>Parish                                 | *                                     | *                                    | 1979                          | A                        | The flood hazard information was redelineated<br>based on newly developed topographic data in<br>the initial countywide FIS. No new flood<br>hazard analysis was performed.                                                                                                                                                                                                                                                                                                         |

# Table 12: Summary of Hydrologic and Hydraulic Analyses

| Table 13: Roughness Coefficient | ble 13: Roughness Coeff | icients |
|---------------------------------|-------------------------|---------|
|---------------------------------|-------------------------|---------|

| Flooding Source     | Channel "n" | Overbank "n" |  |
|---------------------|-------------|--------------|--|
| Bayou Grand Caillou | 0.040       | 0.060        |  |
| Ouiski Bayou        | 0.040       | 0.060-0.150  |  |

### 5.3 Coastal Analyses

For the areas of Terrebonne Parish that are impacted by coastal flooding processes, coastal flood hazard analyses were performed to provide estimates of coastal BFEs. Coastal BFEs reflect the increase in water levels during a flood event due to extreme tides and storm surge as well as overland wave effects.

The following subsections provide summaries of how each coastal process was considered for this FIS Report. Greater detail (including assumptions, analysis, and results) is available in the archived project documentation. Table 14 summarizes the methods and/or models used for the coastal analyses. Refer to Section 2.5.1 for descriptions of the terms used in this section.

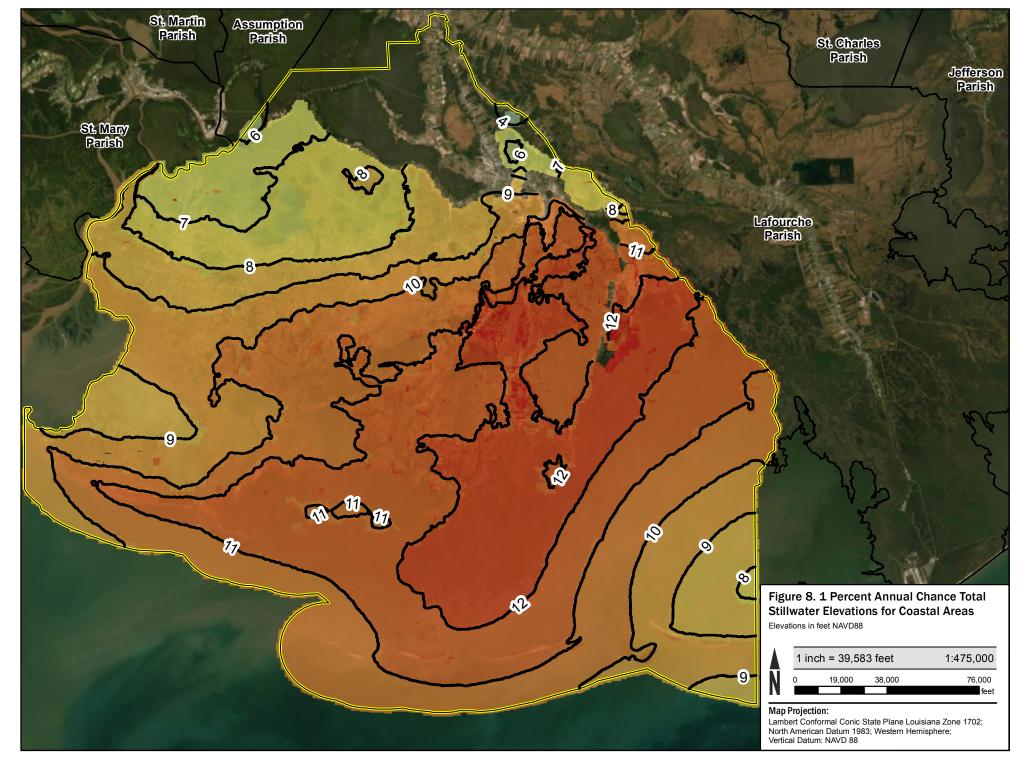

| Flooding<br>Source | Study Limits<br>From                           | Study Limits<br>To                             | Hazard<br>Evaluated                                | Model or<br>Method<br>Used   | Date Analysis<br>was<br>Completed |
|--------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------|------------------------------|-----------------------------------|
| Gulf of<br>Mexico  | Entire<br>coastline of<br>Terrebonne<br>Parish | Entire<br>coastline of<br>Terrebonne<br>Parish | Storm<br>Climatology<br>Statistical<br>Analyses    | JPM-OS                       | 06/30/2007                        |
| Gulf of<br>Mexico  | Entire<br>coastline of<br>Terrebonne<br>Parish | Entire<br>coastline of<br>Terrebonne<br>Parish | Storm Surge<br>including<br>Regional<br>Wave Setup | ADCIRC +<br>STWAVE           | 12/30/2007                        |
| Gulf of<br>Mexico  | Entire<br>coastline of<br>Terrebonne<br>Parish | Entire<br>coastline of<br>Terrebonne<br>Parish | Overland<br>Wave<br>Propagation                    | WHAFIS                       | 07/20/2010                        |
| Gulf of<br>Mexico  | Entire<br>coastline of<br>Terrebonne<br>Parish | Entire<br>coastline of<br>Terrebonne<br>Parish | Wave Runup                                         | Van Der<br>Meer; SPM;<br>TAW | 07/20/2010                        |

 Table 14: Summary of Coastal Analyses

### 5.3.1 Total Stillwater Elevations

The total stillwater elevations (stillwater including storm surge plus wave setup) for the 1-percent-annual-chance flood were determined for areas subject to coastal flooding. The models and methods that were used to determine storm surge and wave setup are listed in Table 14. The stillwater elevation that was used for each transect in coastal analyses is shown in Table 16, "Coastal Transect Parameters." Figure 8 shows the total stillwater elevations for the 1-percent-annual-chance flood that was determined for this coastal analysis.

### Figure 8: 1% Annual Chance Total Stillwater Elevations for Coastal Areas



### Astronomical Tide

Astronomical tidal statistics were generated directly from local tidal constituents by sampling the predicted tide at random times throughout the tidal epoch.

### Storm Surge Statistics

Storm surge is modeled based on characteristics of actual storms responsible for significant coastal flooding. The characteristics of these storms are typically determined by statistical study of the regional historical record of storms or by statistical study of tidal gages.

When historic records are used to calculate storm surge, characteristics such as the strength, size, track, etc., of storms are identified by site. Storm data was used in conjunction with numerical hydrodynamic models to determine the corresponding storm surge levels. An extreme value analysis was performed on the storm surge modeling results to determine a stillwater elevation for the 1-percent-annual-chance event.

Flood estimates for the low frequency events were derived by simulating a large number of storm events using a coupling of hydrodynamic and wave models (i.e., the ADCIRC-ADvanced CIRCulation model and the STWAVE-Steady-state WAVE model). Key storm parameters (central pressure deficit, radius to maximum winds, forward speed, track heading, and the Holland's B parameter) were used to represent a population of historic and synthetic storm events. The Joint Probability Method with Optimal Sampling (JPM-OS), developed by Resio (Resio 2007) and Toro et. al. (Toro 2010), was applied to compute Stillwater Elevations (SWELs), which include the storm surge component and the wave setup component.

Tidal gages can be used instead of historic records of storms when the available tidal gage record for the area represents both the astronomical tide component and the storm surge component. Table 15 provides the gage name, managing agency, gage type, gage identifier, start date, end date, and statistical methodology applied to each gage used to determine the stillwater elevations. For Terrebonne Parish, LA, tidal gage records were not utilized for this Flood Risk project.

### Table 15: Tide Gage Analysis Specifics

### [Not Applicable to this Flood Risk Project]

### Combined Riverine and Tidal Effects

A combined rate of occurrence analysis was conducted to compute a 1-percent-annualchance BFE for areas subject to flooding by both coastal and riverine flooding mechanisms. Since riverine and coastal analyses were based on independent events, the resulting combined BFE would be higher than that of their individual occurrence. In other words, at the location where the computed 1-percent-annual-chance coastal flood level equals the computed 1-percent-annual-chance riverine flood level, there was a greater than 1-percent-annual-chance of this flood level being equaled or exceeded.

In Terrebonne Parish, combined joint probability calculations were performed for Bayou Grand Caillou.

### Wave Setup Analysis

Wave setup was computed during the storm surge modeling through the methods and models listed in Table 14 and included in the frequency analysis for the determination of the total stillwater elevations.

### 5.3.2 Waves

Offshore wave conditions were modeled as part of the regional hydrodynamic and wave modeling (ADCIRC + STWAVE). The regional model results provided valuable information on the wave conditions that could be expected to occur during the types of extreme storm events that would produce storm surge elevations with 1- and 0.2-percent-annual-chance probabilities of occurrence. Wave heights and periods derived from the STWAVE model results were used as inputs to the wave hazard analyses described in Section 5.3.4.

### 5.3.3 Coastal Erosion

A single storm episode can cause extensive erosion in coastal areas. Storm-induced erosion was evaluated to determine the modification to existing topography that is expected to be associated with flooding events. Erosion was evaluated using the methods listed in Table 14. The post-event eroded profile was used for the subsequent transect-based onshore wave hazard analyses.

### 5.3.4 Wave Hazard Analyses

Overland wave hazards were evaluated to determine the combined effects of ground elevation, vegetation, and physical features on overland wave propagation and wave runup. These analyses were performed at representative transects along all shorelines for which waves were expected to be present during the floods of the selected recurrence intervals. The results of these analyses were used to determine elevations for the 1-percent-annual-chance flood.

Transect locations were chosen with consideration given to the physical land characteristics as well as development type and density so that they would closely represent conditions in their locality. Additional consideration was given to changes in the total stillwater elevation. Transects were spaced close together in areas of complex topography and dense development or where total stillwater elevations varied. In areas having more uniform characteristics, transects were spaced at larger intervals. Transects shown in Figure 9, "Transect Location Map," are also depicted on the FIRM. Table 16 provides the location, stillwater elevations, and starting wave conditions for each transect evaluated for overland wave hazards. In this table, "starting" indicates the parameter value at the beginning of the transect.

### Wave Height Analysis

Wave height analyses were performed to determine wave heights and corresponding wave crest elevations for the areas inundated by coastal flooding and subject to overland wave propagation hazards. Refer to Figure 6 for a schematic of a coastal transect evaluated for overland wave propagation hazards.

Wave heights and wave crest elevations were modeled using the methods and models listed in Table 14, "Summary of Coastal Analyses". The 0.2-percent-annual-chance event, wave profiles were not produced for this Flood Risk project.

### Wave Runup Analysis

Wave runup analyses were performed to determine the height and extent of runup beyond the limit of stillwater inundation for the 1-percent-annual-chance flood. Wave runup elevations were modeled using the methods and models listed in Table 14.

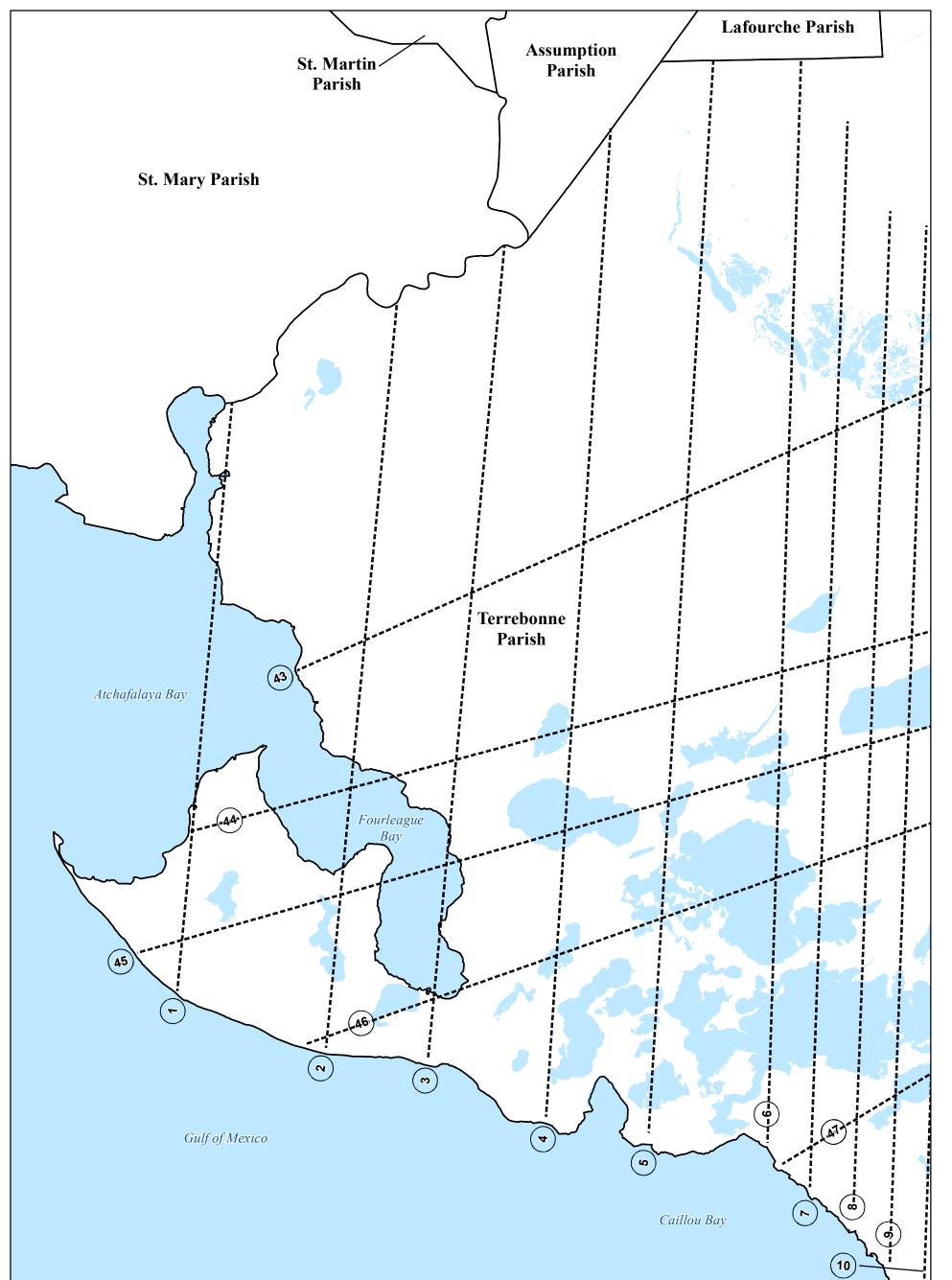
|                   |                     |                         | Starting Wave<br>the 1% Annu                      |                                             |                         |                     |                     |                     |                          |
|-------------------|---------------------|-------------------------|---------------------------------------------------|---------------------------------------------|-------------------------|---------------------|---------------------|---------------------|--------------------------|
| Flood<br>Source   | Coastal<br>Transect | Engineering<br>Transect | Significant<br>Wave Height<br>H <sub>s</sub> (ft) | Peak Wave<br>Period<br>T <sub>p</sub> (sec) | 10%<br>Annual<br>Chance | 4% Annual<br>Chance | 2% Annual<br>Chance | 1% Annual<br>Chance | 0.2%<br>Annual<br>Chance |
| Gulf of<br>Mexico | 1                   | 1                       | 3.4                                               | 10.1                                        | 6.1<br>*                | *                   | 8.7<br>*            | 10.6<br>8.6 - 10.6  | 13.3<br>11.2 - 15.3      |
| Gulf of<br>Mexico | 2                   | 2                       | 3.6                                               | 10.6                                        | 6.7<br>*                | *                   | 9.4<br>*            | 11.3<br>6.7 - 11.3  | 14.4<br>9.6 - 14.9       |
| Gulf of<br>Mexico | 3                   | 3                       | 3.6                                               | 10.2                                        | 6.7<br>*                | *                   | 9.3<br>*            | 11.3<br>6.6 - 11.4  | 14.7<br>9.4 - 14.9       |
| Gulf of<br>Mexico | 4                   | 4                       | 3.6                                               | 10.1                                        | 6.6<br>*                | *                   | 9.4<br>*            | 11.3<br>0 - 11.3    | 14.8<br>2.8 - 15.1       |
| Gulf of<br>Mexico | 5                   | 5                       | 3.8                                               | 10.8                                        | 6.5<br>*                | *                   | 9.6<br>*            | 11.3<br>2.1 - 11.4  | 15.0<br>2.6 - 15.5       |
| Gulf of<br>Mexico | 6                   | 6                       | 4.1                                               | 10.7                                        | 6.5<br>*                | *                   | 9.9<br>*            | 11.6<br>2.0 - 11.6  | 14.9<br>2.3 - 16.2       |
| Caillou Bay       | 7                   | 6.5                     | 4.3                                               | 11.4                                        | *                       | *                   | *                   | 11.5<br>7.2 - 11.5  | *                        |
| Caillou Bay       | 8                   | 7                       | 4.4                                               | 12.0                                        | 6.4<br>*                | *                   | 9.7<br>*            | 11.7<br>2.9 - 11.8  | 14.9<br>2.3 - 16.2       |
| Caillou Bay       | 9                   | 7.5                     | 4.5                                               | 12.7                                        | *                       | *                   | *                   | 11.9<br>12.5 - 2.7  | *                        |
| Caillou Bay       | 10                  | 8                       | 4.5                                               | 13.4                                        | 6.4<br>*                | *                   | 10.1<br>*           | 12.2<br>2.7 - 12.2  | 15.2<br>0.0 - 16.2       |
| Caillou Bay       | 11                  | 8.25                    | 4.6                                               | 14.0                                        | *                       | *                   | *                   | 11.4<br>2.0 - 12.3  | * *                      |

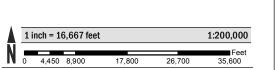
# Table 16: Coastal Transect Parameters

|                   |                     |                         |                                                   | g Wave Conditions for<br>1% Annual Chance Starting Stillwater Elevations (ft NAVD88)<br>(ft NAVD88) |                         |                     |                     |                     |                          |
|-------------------|---------------------|-------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------|---------------------|---------------------|---------------------|--------------------------|
| Flood<br>Source   | Coastal<br>Transect | Engineering<br>Transect | Significant<br>Wave Height<br>H <sub>s</sub> (ft) | Peak Wave<br>Period<br>T <sub>p</sub> (sec)                                                         | 10%<br>Annual<br>Chance | 4% Annual<br>Chance | 2% Annual<br>Chance | 1% Annual<br>Chance | 0.2%<br>Annual<br>Chance |
| Caillou Bay       | 12                  | 8.5                     | 4.8                                               | 14.1                                                                                                | *                       | *                   | *                   | 11.7<br>1.9 - 12.4  | *                        |
| Caillou Bay       | 13                  | 8.75                    | 4.8                                               | 14.1                                                                                                | *                       | *                   | *                   | 11.9<br>2.7 - 12.6  | * *                      |
| Terrebonne<br>Bay | 14                  | 9                       | 5.0                                               | 14.1                                                                                                | 6.8<br>*                | *                   | 10.3<br>*           | 12.4<br>0.0 - 12.6  | 15.3<br>0.0 - 18.0       |
| Terrebonne<br>Bay | 15                  | 9.3                     | 5.2                                               | 14.1                                                                                                | *                       | *                   | *                   | 12.3<br>7.9 - 12.8  | *                        |
| Terrebonne<br>Bay | 16                  | 9.6                     | 5.3                                               | 14.5                                                                                                | *                       | *                   | *                   | 12.4<br>2.4 - 12.6  | *                        |
| Terrebonne<br>Bay | 17                  | 10                      | 5.3                                               | 14.8                                                                                                | 7.1<br>*                | *                   | 10.6<br>*           | 12.5<br>0.0 - 12.5  | 15.4<br>0.0 - 19.7       |
| Terrebonne<br>Bay | 18                  | 10.25                   | 5.2                                               | 10.7                                                                                                | *                       | *                   | *                   | 12.4<br>2.6 - 12.8  | *                        |
| Terrebonne<br>Bay | 19                  | 10.5                    | 5.1                                               | 10.7                                                                                                | *                       | *                   | *                   | 12.2<br>2.0 - 13.4  | *                        |
| Terrebonne<br>Bay | 20                  | 10.75                   | 5.1                                               | 10.6                                                                                                | *                       | *                   | *                   | 12.1<br>1.9 - 12.6  | *                        |
| Terrebonne<br>Bay | 21                  | 11                      | 5.1                                               | 10.3                                                                                                | 7.2<br>*                | *                   | 10.4<br>*           | 12.3<br>0.0 - 12.4  | 15.2<br>0.0 - 16.8       |
| Terrebonne<br>Bay | 22                  | 11.5                    | 5.2                                               | 10.3                                                                                                | *                       | *                   | *                   | 12.0<br>1.4 - 12.6  | *                        |
| Terrebonne<br>Bay | 23                  | 12                      | 5.5                                               | 9.9                                                                                                 | 7.2<br>*                | *                   | 10.2<br>*           | 12.2<br>2.1 - 12.4  | 15.2<br>0.0 - 17.0       |

# Table 16: Coastal Transect Parameters (continued)

|                   |                     |                         |                                                   | Starting Wave Conditions for<br>the 1% Annual Chance (ft NAVD<br>(ft NAVD)<br>Range of Stillwater Elevations<br>(ft NAVD)<br>(ft NAVD)<br>(ft NAVD) |                         |                     |                     |                     |                          |
|-------------------|---------------------|-------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|---------------------|---------------------|--------------------------|
| Flood<br>Source   | Coastal<br>Transect | Engineering<br>Transect | Significant<br>Wave Height<br>H <sub>s</sub> (ft) | Peak Wave<br>Period<br>T <sub>p</sub> (sec)                                                                                                         | 10%<br>Annual<br>Chance | 4% Annual<br>Chance | 2% Annual<br>Chance | 1% Annual<br>Chance | 0.2%<br>Annual<br>Chance |
| Terrebonne<br>Bay | 24                  | 12.25                   | 5.8                                               | 8.7                                                                                                                                                 | *                       | *                   | *                   | 12.5<br>1.6 - 12.5  | *                        |
| Terrebonne<br>Bay | 25                  | 12.5                    | 5.7                                               | 8.6                                                                                                                                                 | *                       | *                   | *                   | 12.4<br>1.3 - 12.7  | *                        |
| Terrebonne<br>Bay | 26                  | 12.75                   | 5.7                                               | 8.6                                                                                                                                                 | *                       | *                   | *                   | 12.4<br>1.6 - 12.9  | *                        |
| Terrebonne<br>Bay | 27                  | 13                      | 5.8                                               | 8.1                                                                                                                                                 | 6.8<br>*                | *                   | 9.8<br>*            | 12.2<br>0.0 - 12.4  | 15.2<br>0.0 - 21.5       |
| Terrebonne<br>Bay | 28                  | 13.3                    | 5.8                                               | 7.9                                                                                                                                                 | *                       | *                   | *                   | 12.3<br>1.5 - 12.7  | *                        |
| Terrebonne<br>Bay | 29                  | 13.6                    | 5.7                                               | 7.8                                                                                                                                                 | *                       | *                   | *                   | 12.2<br>0.3 - 13.1  | *                        |
| Terrebonne<br>Bay | 30                  | 14                      | 5.8                                               | 8.1                                                                                                                                                 | 7.1<br>*                | *                   | 9.9<br>*            | 12.1<br>0.0 - 13.3  | 15.3<br>0.0 - 18.9       |
| Terrebonne<br>Bay | 31                  | 14.3                    | 5.7                                               | 7.9                                                                                                                                                 | *                       | *                   | *                   | 11.9<br>2.5 - 13.5  | * *                      |
| Terrebonne<br>Bay | 32                  | 14.6                    | 5.6                                               | 7.7                                                                                                                                                 | *                       | *                   | *                   | 11.7<br>2.4 - 12.7  | *                        |
| Terrebonne<br>Bay | 33                  | 15                      | 5.5                                               | 7.5                                                                                                                                                 | 6.6<br>*                | *                   | 9.6<br>*            | 11.8<br>0.0 - 12.4  | 15.0<br>0.0 - 16.9       |
| Terrebonne<br>Bay | 34                  | 15.5                    | 5.4                                               | 7.4                                                                                                                                                 | *                       | *                   | *                   | 11.2<br>0.7 - 12.6  | *                        |
| Terrebonne<br>Bay | 35                  | 16                      | 5.3                                               | 9.0                                                                                                                                                 | 6.2<br>*                | *                   | 9<br>*              | 10.9<br>2.1 - 12.0  | 14.0<br>2.5 - 16.1       |

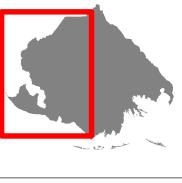

# Table 16: Coastal Transect Parameters (continued)


|                    |                     |                         |                                                   | Vave Conditions for Annual Chance Starting Stillwater Elevations (ft NAVD88)<br>(ft NAVD88) |                         |                     |                     |                     |                          |
|--------------------|---------------------|-------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------|---------------------|---------------------|---------------------|--------------------------|
| Flood<br>Source    | Coastal<br>Transect | Engineering<br>Transect | Significant<br>Wave Height<br>H <sub>s</sub> (ft) | Peak Wave<br>Period<br>T <sub>p</sub> (sec)                                                 | 10%<br>Annual<br>Chance | 4% Annual<br>Chance | 2% Annual<br>Chance | 1% Annual<br>Chance | 0.2%<br>Annual<br>Chance |
| Terrebonne<br>Bay  | 36                  | 16.5                    | 5.4                                               | 9.7                                                                                         | *                       | *                   | *                   | 11.3<br>4.6 - 11.9  | *                        |
| Terrebonne<br>Bay  | 37                  | 17                      | 5.3                                               | 9.0                                                                                         | 6.2<br>*                | *                   | 9.0<br>*            | 11.1<br>3.7 - 11.6  | 14.2<br>2.2 - 16.5       |
| Terrebonne<br>Bay  | 38                  | 17.5                    | 5.2                                               | 8.0                                                                                         | *                       | *                   | *                   | 10.6<br>5.8 - 11.8  | * *                      |
| Timbalier<br>Bay   | 39                  | 18                      | 4.7                                               | 9.1                                                                                         | 5.6<br>*                | *                   | 8.3<br>*            | 10.2<br>5.2 - 11.3  | 13.2<br>7.7 - 17.4       |
| Terrebonne<br>Bay  | 40                  | 19                      | 5.3                                               | 9.0                                                                                         | *                       | *                   | *                   | 11<br>10.5 - 13.1   | *                        |
| Terrebonne<br>Bay  | 41                  | 20                      | 5.5                                               | 9.0                                                                                         | *                       | *                   | *                   | 11.3<br>8.7 - 13.6  | *                        |
| Timbalier<br>Bay   | 42                  | 21                      | 5.0                                               | 8.8                                                                                         | *                       | *                   | *                   | 10.4<br>2.4 - 12.6  | *                        |
| Atchafalaya<br>Bay | 43                  | TW2                     | 6.9                                               | 9.0                                                                                         | 8.3<br>*                | *                   | *                   | 9.3<br>2.7 - 9.5    | *                        |
| Atchafalaya<br>Bay | 44                  | TW4                     | 11.4                                              | 11.2                                                                                        | 8.6<br>*                | *                   | *                   | 8.4<br>8.4 - 11.2   | *                        |
| Gulf of<br>Mexico  | 45                  | TW6                     | 11.5                                              | 11.3                                                                                        | 8.6<br>*                | *                   | *                   | 10.2<br>8.8 - 11.0  | *                        |
| Gulf of<br>Mexico  | 46                  | TW7                     | 11.7                                              | 11.4                                                                                        | 8.4<br>*                | *                   | *                   | 11.2<br>9.6 - 12.0  | *                        |
| Caillou Bay        | 47                  | TW8                     | 9.9                                               | 10.7                                                                                        | 8.0<br>*                | *                   | *                   | 11.4<br>11.0 - 12.8 | *                        |

# Table 16: Coastal Transect Parameters (continued)

\*Not calculated for this Flood Risk Project

Figure 9: Transect Location Map

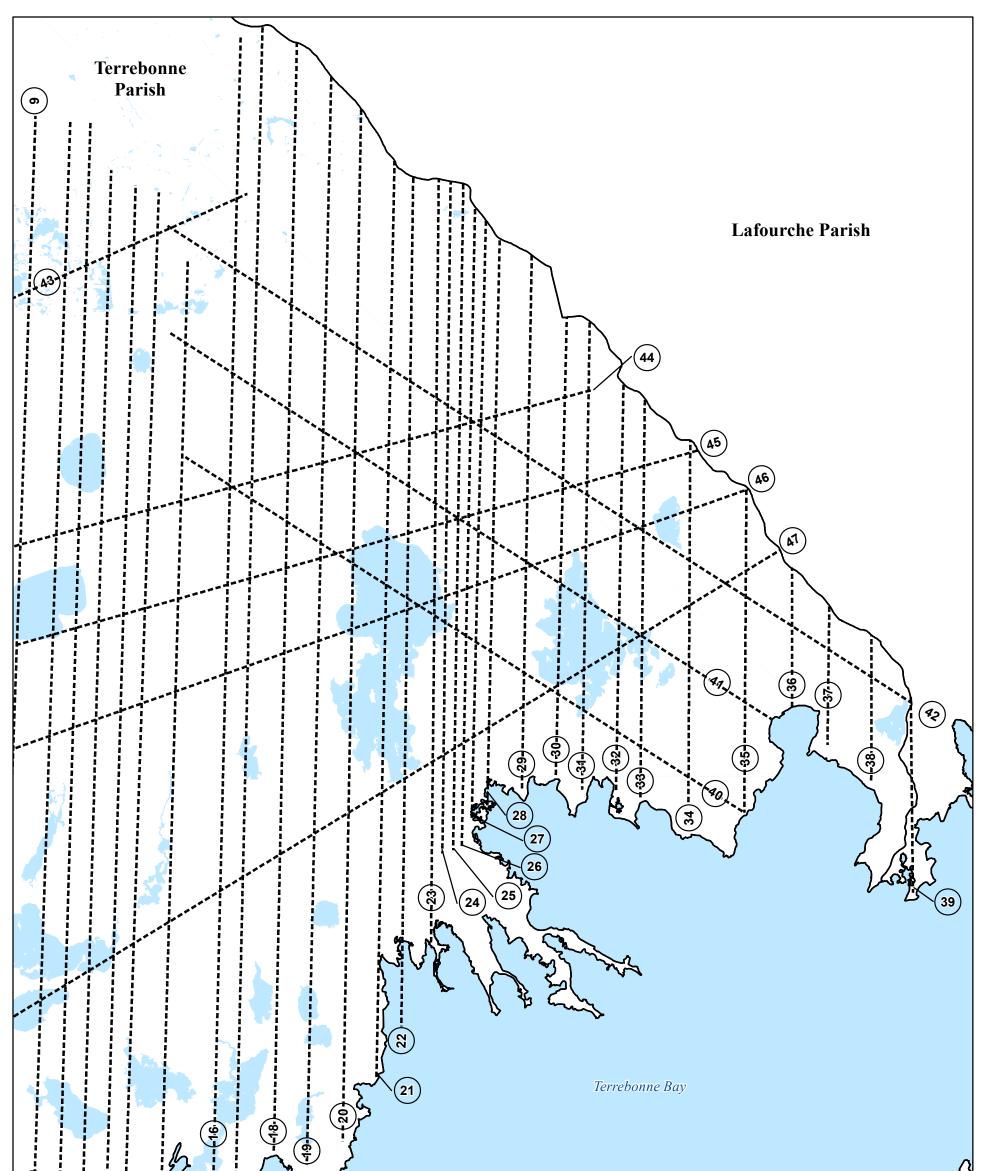


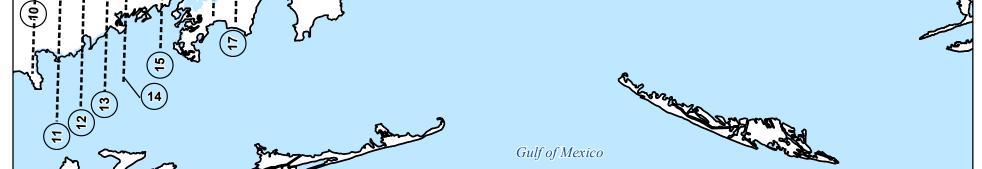


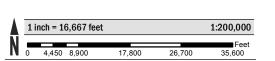

### Map Projection:

Lambert Conformal Conic State Plane Louisiana Zone 1702; North American Datum 1983; Western Hemisphere; Vertical Datum: North American Vertical Datum of 1988

### COUNTY LOCATOR

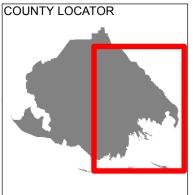




# NATIONAL FLOOD INSURANCE PROGRAM


**Transect Locator Map** 

0050E, 0075E, 0100E, 0150E, 0175E, 0200E, 0225E, 0250E, 0325E, 0350E, 0375E, 0400E, 0425E, 0525E, 0550E, 0575E, 0600E, 0625E, 0750E, 0775E, 0800E, 0825E, 0950E, 0975E










### Map Projection:

Lambert Conformal Conic State Plane Louisiana Zone 1702; North American Datum 1983; Western Hemisphere; Vertical Datum: North American Vertical Datum of 1988



# NATIONAL FLOOD INSURANCE PROGRAM

**Transect Locator Map** 

0075E, 0100E, 0115E, 0125E, 0225E, 0235E, 0245E, 0250E, 0251E, 0252E, 0253E, 0254E, 0260E, 0275E, 0300E, 0400E, 0425E, 0450E 0475E, 0500E, 0600E, 0625E, 0650E, 0675E, 0700E, 0800E, 0825E, 0850E, 0950E, 0950E, 0975E



### 5.4 Alluvial Fan Analyses

This section is not applicable to this Flood Risk Project.

Table 17: Summary of Alluvial Fan Analyses[Not Applicable to this Flood Risk Project]Table 18: Results of Alluvial Fan Analyses[Not Applicable to this Flood Risk Project]

### **SECTION 6.0 – MAPPING METHODS**

### 6.1 Vertical and Horizontal Control

All FIS Reports and FIRMs are referenced to a specific vertical datum. The vertical datum provides a starting point against which flood, ground, and structure elevations can be referenced and compared. Until recently, the standard vertical datum used for newly created or revised FIS Reports and FIRMs was the National Geodetic Vertical Datum of 1929 (NGVD29). With the completion of the North American Vertical Datum of 1988 (NAVD88), many FIS Reports and FIRMs are now prepared using NAVD88 as the referenced vertical datum.

Flood elevations shown in this FIS Report and on the FIRMs are referenced to NAVD88. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between NGVD29 and NAVD88 or other datum conversion, visit the National Geodetic Survey website at <u>www.ngs.noaa.gov</u>.

Temporary vertical monuments are often established during the preparation of a flood hazard analysis for the purpose of establishing local vertical control. Although these monuments are not shown on the FIRM, they may be found in the archived project documentation associated with the FIS Report and the FIRMs for this community. Interested individuals may contact FEMA to access these data.

To obtain current elevation, description, and/or location information for benchmarks in the area, please visit the NGS website at <u>www.ngs.noaa.gov</u>.

The datum conversion locations and values that were calculated for Terrebonne Parish are provided in Table 19.

| Quadrangle Name | Quadrangle<br>Corner | Latitude | Longitude | Conversion from<br>NGVD29 to<br>NAVD88 (feet) |
|-----------------|----------------------|----------|-----------|-----------------------------------------------|
| Bayou Cocodrie  | SW                   | 29.500   | -91.000   | -0.364                                        |
| Bayou Sauveur   | SW                   | 29.250   | -90.875   | -0.036                                        |
| Carencro Bayou  | SW                   | 29.375   | -91.125   | -0.207                                        |
| Cat Island Pass | SW                   | 29.000   | -90.625   | 0.052                                         |

 Table 19: Countywide Vertical Datum Conversion

| Quadrangle Name         | Quadrangle<br>Corner | Latitude | Longitude | Conversion from<br>NGVD29 to<br>NAVD88 (feet) |
|-------------------------|----------------------|----------|-----------|-----------------------------------------------|
| Central Isles Dernieres | SW                   | 29.000   | -90.875   | 0.020                                         |
| Cocodrie                | SW                   | 29.125   | -90.750   | 0.075                                         |
| Dog Lake                | SW                   | 29.125   | -90.875   | 0.023                                         |
| Dulac                   | SW                   | 29.375   | -90.750   | -0.118                                        |
| East Bay Junop          | SW                   | 29.125   | -91.125   | -0.066                                        |
| Eastern Isles Dernieres | SW                   | 29.000   | -90.750   | 0.046                                         |
| Fourleague Bay          | SW                   | 29.250   | -91.250   | -0.125                                        |
| Gibson                  | NE                   | 29.750   | -90.875   | -0.272                                        |
| Gibson                  | NW                   | 29.750   | -91.000   | -0.259                                        |
| Gibson                  | SE                   | 29.625   | -90.875   | -0.594                                        |
| Gibson                  | SW                   | 29.625   | -91.000   | -0.344                                        |
| Grand Bayou Du Large    | SW                   | 29.125   | -91.000   | -0.030                                        |
| Houma                   | NE                   | 29.625   | -90.625   | -0.020                                        |
| Houma                   | NW                   | 29.625   | -90.750   | -0.433                                        |
| Houma                   | SE                   | 29.500   | -90.625   | -0.039                                        |
| Houma                   | SW                   | 29.500   | -90.750   | -0.236                                        |
| Humphreys               | SW                   | 29.500   | -90.875   | -0.394                                        |
| Jacko Bay               | SE                   | 29.125   | -90.375   | 0.062                                         |
| Jacko Bay               | SW                   | 29.125   | -90.500   | 0.075                                         |
| Lake Felicity           | NE                   | 29.375   | -90.375   | -0.033                                        |
| Lake Felicity           | SE                   | 29.250   | -90.375   | 0.046                                         |
| Lake Felicity           | SW                   | 29.250   | -90.500   | 0.092                                         |
| Lake La Graisse         | SW                   | 29.125   | -90.625   | 0.098                                         |
| Lake Mechant            | SW                   | 29.250   | -91.000   | -0.095                                        |
| Lake Penchant           | SW                   | 29.375   | -91.000   | -0.213                                        |
| Lake Quitman            | SW                   | 29.250   | -90.750   | 0.089                                         |
| Lake Tambour            | SW                   | 29.250   | -90.625   | 0.193                                         |
| Lake Theriot            | SW                   | 29.375   | -90.875   | -0.184                                        |
| Lost Lake               | SW                   | 29.250   | -91.125   | -0.118                                        |
| Montegut                | NE                   | 29.500   | -90.500   | -0.128                                        |
| Montegut                | SE                   | 29.375   | -90.500   | -0.062                                        |
| Montegut                | SW                   | 29.375   | -90.625   | -0.095                                        |
| Morgan City SE          | NW                   | 29.625   | -91.125   | -0.344                                        |

Table 19: Countywide Vertical Datum Conversion (continued)

| Quadrangle Name                      | Quadrangle<br>Corner | Latitude      | Longitude | Conversion from<br>NGVD29 to<br>NAVD88 (feet) |  |
|--------------------------------------|----------------------|---------------|-----------|-----------------------------------------------|--|
| Morgan City SE                       | SW                   | 29.5          | -91.125   | -0.305                                        |  |
| Oyster Bayou                         | SW                   | 29.125        | -91.25    | -0.082                                        |  |
| Plumb Bayou                          | NW                   | 29.5          | -91.25    | -0.259                                        |  |
| Plumb Bayou                          | SW                   | 29.375        | -91.25    | -0.187                                        |  |
| Point Au Fer                         | SW                   | 29.25         | -91.375   | -0.121                                        |  |
| Timbalier Island                     | SE                   | 29            | -90.375   | 0.036                                         |  |
| Timbalier Island                     | SW                   | 29            | -90.5     | 0.046                                         |  |
| Western Isles DernieresSW29-91-0.016 |                      |               |           |                                               |  |
| Average Conversion from NGV          | D29 to NAVD88        | = -0.107 feet |           |                                               |  |

Table 19: Countywide Vertical Datum Conversion (continued)

### Table 20: Stream-Based Vertical Datum Conversion

### [Not Applicable to this Flood Risk Project]

### 6.2 Base Map

The FIRMs and FIS Report for this project have been produced in a digital format. The flood hazard information was converted to a Geographic Information System (GIS) format that meets FEMA's FIRM Database specifications and geographic information standards. This information is provided in a digital format so that it can be incorporated into a local GIS and be accessed more easily by the community. The FIRM Database includes most of the tabular information contained in the FIS Report in such a way that the data can be associated with pertinent spatial features. For example, the information contained in the FIO Profiles can be linked to the cross sections that are shown on the FIRMs. Additional information about the FIRM Database and its contents can be found in FEMA's *Guidelines and Standards for Flood Risk Analysis and Mapping*, www.fema.gov/flood-maps/guidance-partners/guidelines-standards.

Base map information shown on the FIRM was derived from the sources described in Table 21.

| Data Type            | Data Provider                                                   | Data<br>Date | Data<br>Scale | Data Description                |
|----------------------|-----------------------------------------------------------------|--------------|---------------|---------------------------------|
| Digital Orthophoto   | U.S. Department<br>of Agriculture                               | 2019         | 1:6,000       | Digital orthoimagery            |
| Political boundaries | Louisiana<br>Department of<br>Transportation<br>and Development | 2020         | 1:6,000       | Municipal and county boundaries |

 Table 21: Base Map Sources

| Data Type                           | Data Provider                                      | Data<br>Date | Data<br>Scale | Data Description                                      |
|-------------------------------------|----------------------------------------------------|--------------|---------------|-------------------------------------------------------|
| Public Land Survey<br>System (PLSS) | U.S. Bureau of<br>Land<br>Management               | 2020         | 1:6,000       | PLSS Township                                         |
| Transportation<br>Features          | Terrebonne<br>Parish<br>Communications<br>District | 2020         | 1:6,000       | TPCG Streets                                          |
| Surface Water<br>Features           | U.S. Geological<br>Survey                          | 2020         | 1:6,000       | Streams, rivers, and lakes were derived from NHD data |

Table 21: Base Map Sources (continued)

### 6.3 Floodplain and Floodway Delineation

The FIRM shows tints, screens, and symbols to indicate floodplains and floodways as well as the locations of selected cross sections used in the hydraulic analyses and floodway computations.

For riverine flooding sources, the mapped floodplain boundaries shown on the FIRM have been delineated using the flood elevations determined at each cross section; between cross sections, the boundaries were interpolated using the topographic elevation data described in Table 22. For each coastal flooding source studied as part of this FIS Report, the mapped floodplain boundaries on the FIRM have been delineated using the flood and wave elevations determined at each transect; between transects, boundaries were delineated using land use and land cover data, the topographic elevation data described in Table 22, and knowledge of coastal flood processes. In ponding areas, flood elevations were determined at each junction of the model; between junctions, boundaries were interpolated using the topographic elevation data described in Table 22.

In cases where the 1-percent and 0.2-percent-annual-chance floodplain boundaries are close together, only the 1-percent-annual-chance floodplain boundary has been shown. Small areas within the floodplain boundaries may lie above the flood elevations but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data.

The floodway widths presented in this FIS Report and on the FIRM were computed for certain stream segments on the basis of equal conveyance reduction from each side of the floodplain. Floodway widths were computed at cross sections. Between cross sections, the floodway boundaries were interpolated. Table 2 indicates the flooding sources for which floodways have been determined. The results of the floodway computations for those flooding sources have been tabulated for selected cross sections and are shown in Table 23, "Floodway Data."

#### Source for Topographic Elevation Data Vertical Flooding Horizontal Community Source Description Citation Accuracy Accuracy Terrebonne **Bayou Grand** +/- 3.8 ft at Parish. Caillou: Ouiski Light Detection and 95% USGS 7.0 cm Consolidated Bayou; Gulf of Ranging data (LiDAR) RMSEz confidence 2011 Mexico Government level

### Table 22: Summary of Topographic Elevation Data used in Mapping

\*Data not available

BFEs shown at cross sections on the FIRM represent the 1-percent-annual-chance water surface elevations shown on the Flood Profiles and in the Floodway Data tables in the FIS Report. Rounded whole-foot elevations may be shown on the FIRM in coastal areas, areas of ponding, and other areas with static base flood elevations.

### Table 23: Floodway Data

### [Not Applicable to this Flood Risk Project]

### Table 24: Flood Hazard and Non-Encroachment Data for Selected Streams

### [Not Applicable to this Flood Risk Project]

### 6.4 Coastal Flood Hazard Mapping

Flood insurance zones and BFEs including the wave effects were identified on each transect based on the results from the onshore wave hazard analyses. Between transects, elevations were interpolated using topographic maps, land-use and land-cover data, and knowledge of coastal flood processes to determine the aerial extent of flooding. Sources for topographic data are shown in Table 22.

Zone VE is subdivided into elevation zones and BFEs are provided on the FIRM.

The limit of Zone VE shown on the FIRM is defined as the farthest inland extent of any of these criteria (determined for the 1-percent-annual-chance flood condition):

- The *primary frontal dune zone* is defined in 44 CFR Section 59.1 of the NFIP regulations. The primary frontal dune represents a continuous or nearly continuous mound or ridge of sand with relatively steep seaward and landward slopes that occur immediately landward and adjacent to the beach. The primary frontal dune zone is subject to erosion and overtopping from high tides and waves during major coastal storms. The inland limit of the primary frontal dune zone occurs at the point where there is a distinct change from a relatively steep slope to a relatively mild slope.
- The *wave runup zone* occurs where the (eroded) ground profile is 3.0 feet or more below the 2-percent wave runup elevation.
- The *wave overtopping splash zone* is the area landward of the crest of an overtopped barrier, in cases where the potential 2-percent wave runup exceeds the barrier crest elevation by 3.0 feet or more.

- The *wave overtopping splash zone* is the area landward of the crest of an overtopped barrier, in cases where the potential 2-percent wave runup exceeds the barrier crest elevation by 3.0 feet or more.
- The *breaking wave height zone* occurs where 3-foot or greater wave heights could occur (this is the area where the wave crest profile is 2.1 feet or more above the total stillwater elevation).
- The *high-velocity flow zone* is landward of the overtopping splash zone (or area on a sloping beach or other shore type), where the product of depth of flow times the flow velocity squared (hv<sup>2</sup>) is greater than or equal to 200 ft<sup>3</sup>/sec<sup>2</sup>. This zone may only be used on the Pacific Coast.

The SFHA boundary indicates the limit of SFHAs shown on the FIRM as either "V" zones or "A" zones.

Table 25 indicates the coastal analyses used for floodplain mapping and the criteria used to determine the inland limit of the open-coast Zone VE and the SFHA boundary at each transect.

| Coastal  | Engineering | Primary<br>Frontal<br>Dune (PFD) | Wave Runup<br>Analysis<br>Zone<br>Designation<br>and BFE | Wave Height<br>Analysis<br>Zone<br>Designation<br>and BFE | Zone VE     | SFHA     |
|----------|-------------|----------------------------------|----------------------------------------------------------|-----------------------------------------------------------|-------------|----------|
| Transect | Transect    | Identified                       | (ft NAVD88)                                              | (ft NAVD88)                                               | Limit       | Boundary |
| 1        | 1           |                                  | N/A                                                      | VE 11-14<br>AE 10-12                                      | Wave Height | SWEL     |
| 2        | 2           |                                  | N/A                                                      | VE 9-15<br>AE 8-13                                        | Wave Height | SWEL     |
| 3        | 3           |                                  | N/A                                                      | VE 9-15<br>AE 8-13                                        | Wave Height | SWEL     |
| 4        | 4           |                                  | N/A                                                      | VE 10-15<br>AE 2-13                                       | Wave Height | SWEL     |
| 5        | 5           |                                  | N/A                                                      | VE 10-16<br>AE 2-13                                       | Wave Height | SWEL     |
| 6        | 6           |                                  | N/A                                                      | VE 10-16<br>AE 2-13                                       | Wave Height | SWEL     |
| 7        | 6.5         |                                  | N/A                                                      | VE 10-16<br>AE 2-13                                       | Wave Height | N/A      |
| 8        | 7           |                                  | N/A                                                      | VE 12-17<br>AE 3-13                                       | Wave Height | N/A      |
| 9        | 7.5         |                                  | N/A                                                      | VE 13-17<br>AE 3-14                                       | Wave Height | N/A      |

 Table 25: Summary of Coastal Transect Mapping Considerations

| Coastal<br>Transect | Engineering<br>Transect | Primary<br>Frontal<br>Dune (PFD)<br>Identified | Wave Runup<br>Analysis<br>Zone<br>Designation<br>and BFE<br>(ft NAVD88) | Wave Height<br>Analysis<br>Zone<br>Designation<br>and BFE<br>(ft NAVD88) | Zone VE<br>Limit | SFHA<br>Boundary |
|---------------------|-------------------------|------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------|------------------|
| 10                  | 8                       |                                                | N/A                                                                     | VE 13-17<br>AE 3-14                                                      | Wave Height      | N/A              |
| 11                  | 8.25                    |                                                | N/A                                                                     | VE 14-17<br>AE 3-14                                                      | Wave Height      | SWEL             |
| 12                  | 8.5                     |                                                | N/A                                                                     | VE 14-17<br>AE 3-14                                                      | Wave Height      | SWEL             |
| 13                  | 8.75                    |                                                | N/A                                                                     | VE 13-17<br>AE 3-14                                                      | Wave Height      | SWEL             |
| 14                  | 9                       |                                                | N/A                                                                     | VE 13-18<br>AE 3-14                                                      | Wave Height      | SWEL             |
| 15                  | 9.3                     |                                                | N/A                                                                     | VE 13-18<br>AE 8-14                                                      | Wave Height      | SWEL             |
| 16                  | 9.6                     |                                                | N/A                                                                     | VE 14-18<br>AE 3-14                                                      | Wave Height      | SWEL             |
| 17                  | 10                      |                                                | N/A                                                                     | VE 14-18<br>AE 3-14                                                      | Wave Height      | SWEL             |
| 18                  | 10.25                   |                                                | N/A                                                                     | VE 14-18<br>AE 3-14                                                      | Wave Height      | SWEL             |
| 19                  | 10.5                    |                                                | N/A                                                                     | VE 14-18<br>AE 4-14                                                      | Wave Height      | SWEL             |
| 20                  | 10.75                   |                                                | N/A                                                                     | VE 14-18<br>AE 5-14                                                      | Wave Height      | SWEL             |
| 21                  | 11                      |                                                | N/A                                                                     | VE 14-18<br>AE 6-14                                                      | Wave Height      | SWEL             |
| 22                  | 11.5                    |                                                | N/A                                                                     | VE 14-18<br>AE 7-14                                                      | Wave Height      | SWEL             |
| 23                  | 12                      |                                                | N/A                                                                     | VE 14-18<br>AE 7-14                                                      | Wave Height      | SWEL             |
| 24                  | 12.25                   |                                                | N/A                                                                     | VE 14-18<br>AE 6-14                                                      | Wave Height      | SWEL             |
| 25                  | 12.5                    |                                                | N/A                                                                     | VE 14-18<br>AE 7-14                                                      | Wave Height      | SWEL             |
| 26                  | 12.75                   |                                                | N/A                                                                     | VE 14-18<br>AE 7-14                                                      | Wave Height      | SWEL             |
| 27                  | 13                      |                                                | N/A                                                                     | VE 14-18<br>AE 7-14                                                      | Wave Height      | SWEL             |

# Table 25: Summary of Coastal Transect Mapping Considerations (continued)

| Coastal<br>Transect | Engineering<br>Transect | Primary<br>Frontal<br>Dune (PFD)<br>Identified | Wave Runup<br>Analysis<br>Zone<br>Designation<br>and BFE<br>(ft NAVD88) | Wave Height<br>Analysis<br>Zone<br>Designation<br>and BFE<br>(ft NAVD88) | Zone VE<br>Limit | SFHA<br>Boundary |
|---------------------|-------------------------|------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------|------------------|
| 28                  | 13.3                    |                                                | N/A                                                                     | VE 14-18<br>AE 7-14                                                      | Wave Height      | SWEL             |
| 29                  | 13.6                    |                                                | N/A                                                                     | VE 14-18<br>AE 6-14                                                      | Wave Height      | SWEL             |
| 30                  | 14                      |                                                | N/A                                                                     | VE 14-18<br>AE 12-13                                                     | Wave Height      | SWEL             |
| 31                  | 14.3                    |                                                | N/A                                                                     | VE 14-18<br>AE 12-15                                                     | Wave Height      | SWEL             |
| 32                  | 14.6                    |                                                | N/A                                                                     | VE 14-18<br>AE 12-14                                                     | Wave Height      | SWEL             |
| 33                  | 15                      |                                                | N/A                                                                     | VE 14-17<br>AE 12-14                                                     | Wave Height      | SWEL             |
| 34                  | 15.5                    |                                                | N/A                                                                     | VE 14-17<br>AE 13-14                                                     | Wave Height      | SWEL             |
| 35                  | 16                      |                                                | N/A                                                                     | VE 14-17<br>AE 13-14                                                     | Wave Height      | SWEL             |
| 36                  | 16.5                    |                                                | N/A                                                                     | VE 14-17<br>AE 13                                                        | Wave Height      | SWEL             |
| 37                  | 17                      |                                                | N/A                                                                     | VE 13-17<br>AE 13                                                        | Wave Height      | SWEL             |
| 38                  | 17.5                    |                                                | N/A                                                                     | VE 13-16<br>AE 12-13                                                     | Wave Height      | SWEL             |
| 39                  | 18                      |                                                | N/A                                                                     | VE 13<br>AE 12-13                                                        | Wave Height      | SWEL             |
| 40                  | 19                      |                                                | N/A                                                                     | VE 13-17<br>AE 12-14                                                     | Wave Height      | SWEL             |
| 41                  | 20                      |                                                | N/A                                                                     | VE 14-17<br>AE 10-14                                                     | Wave Height      | SWEL             |
| 42                  | 21                      |                                                | N/A                                                                     | VE 13-17<br>AE 3-14                                                      | Wave Height      | SWEL             |
| 43                  | TW2                     |                                                | N/A                                                                     | VE 10-17<br>AE 3-15                                                      | Wave Height      | SWEL             |
| 44                  | TW4                     |                                                | N/A                                                                     | VE 10-17<br>AE 3-15                                                      | Wave Height      | SWEL             |
| 45                  | TW6                     |                                                | N/A                                                                     | VE 10-17<br>AE 3-15                                                      | Wave Height      | SWEL             |

# Table 25: Summary of Coastal Transect Mapping Considerations (continued)

| Coastal<br>Transect | Engineering<br>Transect | Primary<br>Frontal<br>Dune (PFD)<br>Identified | Wave Runup<br>Analysis<br>Zone<br>Designation<br>and BFE<br>(ft NAVD88) | Wave Height<br>Analysis<br>Zone<br>Designation<br>and BFE<br>(ft NAVD88) | Zone VE<br>Limit | SFHA<br>Boundary |
|---------------------|-------------------------|------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------|------------------|
| 46                  | TW7                     |                                                | N/A                                                                     | VE 10-17<br>AE 3-15                                                      | Wave Height      | SWEL             |
| 47                  | TW8                     |                                                | N/A                                                                     | VE 10-17<br>AE 3-15                                                      | Wave Height      | SWEL             |

Table 25: Summary of Coastal Transect Mapping Considerations (continued)

A LiMWA boundary has also been added in coastal areas subject to wave action for use by local communities in safe rebuilding practices. The LiMWA represents the approximate landward limit of the 1.5-foot breaking wave.

### 6.5 FIRM Revisions

This FIS Report and the FIRM are based on the most up-to-date information available to FEMA at the time of its publication; however, flood hazard conditions change over time. Communities or private parties may request flood map revisions at any time. Certain types of requests require submission of supporting data. FEMA may also initiate a revision. Revisions may take several forms, including Letters of Map Amendment (LOMAs), Letters of Map Revision Based on Fill (LOMR-Fs), Letters of Map Revision (LOMRs) (referred to collectively as Letters of Map Change (LOMCs)), Physical Map Revisions (PMRs), and FEMA-contracted restudies. These types of revisions are further described below. Some of these types of revisions do not result in the republishing of the FIS Report. To assure that any user is aware of all revisions, it is advisable to contact the community repository of flood-hazard data (shown in Table 30, "Map Repositories").

### 6.5.1 Letters of Map Amendment

A LOMA is an official revision by letter to an effective NFIP map. A LOMA results from an administrative process that involves the review of scientific or technical data submitted by the owner or lessee of property who believes the property has incorrectly been included in a designated SFHA. A LOMA amends the currently effective FEMA map and establishes that a specific property is not located in a SFHA.

To obtain an application for a LOMA, visit <u>www.fema.gov/flood-maps/change-your-flood-zone/paper-application-forms</u> and download the form "MT-1 Application Forms and Instructions for Conditional and Final Letters of Map Amendment and Letters of Map Revision Based on Fill". Visit the "Flood Map-Related Fees" section to determine the cost, if any, of applying for a LOMA.

FEMA offers a tutorial on how to apply for a LOMA. The LOMA Tutorial Series can be accessed at <u>www.fema.gov/flood-maps/tutorials</u>.

For more information about how to apply for a LOMA, call the FEMA Mapping and Insurance eXchange; toll free, at 1-877-FEMA MAP (1-877-336-2627).

### 6.5.2 Letters of Map Revision Based on Fill

A LOMR-F is an official revision by letter to an effective NFIP map. A LOMR-F states FEMA's determination concerning whether a structure or parcel has been elevated on fill above the base flood elevation and is, therefore, excluded from the SFHA.

Information about obtaining an application for a LOMR-F can be obtained in the same manner as that for a LOMA, by visiting <u>www.fema.gov/flood-maps/change-your-flood-zone/paper-application-forms</u> for the "MT-1 Application Forms and Instructions for Conditional and Final Letters of Map Amendment and Letters of Map Revision Based on Fill" or by calling the FEMA Mapping and Insurance eXchange, toll free, at 1-877-FEMA MAP (1-877-336-2627). Fees for applying for a LOMR-F, if any, are listed in the "Flood Map-Related Fees" section.

A tutorial for LOMR-F is available at <u>www.fema.gov/flood-maps/tutorials</u>.

### 6.5.3 Letters of Map Revision

A LOMR is an official revision to the currently effective FEMA map. It is used to change flood zones, floodplain and floodway delineations, flood elevations and planimetric features. All requests for LOMRs should be made to FEMA through the chief executive officer of the community, since it is the community that must adopt any changes and revisions to the map. If the request for a LOMR is not submitted through the chief executive officer of the community, evidence must be submitted that the community has been notified of the request.

To obtain an application for a LOMR, visit <u>www.fema.gov/flood-maps/change-your-flood-zone/paper-application-forms</u> and download the form "MT-2 Application Forms and Instructions for Conditional Letters of Map Revision and Letters of Map Revision". Visit the "Flood Map-Related Fees" section to determine the cost of applying for a LOMR. For more information about how to apply for a LOMR, call the FEMA Mapping and Insurance eXchange; toll free, at 1-877-FEMA MAP (1-877-336-2627) to speak to a Map Specialist.

Previously issued mappable LOMCs (including LOMRs) that have been incorporated into the Terrebonne Parish FIRM are listed in Table 26.

### Table 26: Incorporated Letters of Map Change

### [Not Applicable to this Flood Risk Project]

### 6.5.4 Physical Map Revisions

A Physical Map Revisions (PMR) is an official republication of a community's NFIP map to effect changes to base flood elevations, floodplain boundary delineations, regulatory floodways and planimetric features. These changes typically occur as a result of structural works or improvements, annexations resulting in additional flood hazard areas or correction to base flood elevations or SFHAs.

The community's chief executive officer must submit scientific and technical data to FEMA to support the request for a PMR. The data will be analyzed and the map will be revised if warranted. The community is provided with copies of the revised information and is afforded a review period. When the base flood elevations are changed, a 90-day appeal period is provided. A 6-month adoption period for formal approval of the revised

appeal period is provided. A 6-month adoption period for formal approval of the revised map(s) is also provided.

For more information about the PMR process, please visit <u>www.fema.gov</u> and visit the "Flood Map Revision Processes" section.

### 6.5.5 Contracted Restudies

The NFIP provides for a periodic review and restudy of flood hazards within a given community. FEMA accomplishes this through a national watershed-based mapping needs assessment strategy, known as the Coordinated Needs Management Strategy (CNMS). The CNMS is used by FEMA to assign priorities and allocate funding for new flood hazard analyses used to update the FIS Report and FIRM. The goal of CNMS is to define the validity of the engineering study data within a mapped inventory. The CNMS is used to track the assessment process, document engineering gaps and their resolution, and aid in prioritization for using flood risk as a key factor for areas identified for flood map updates. Visit www.fema.gov to learn more about the CNMS or contact the FEMA Regional Office listed in Section 8 of this FIS Report.

### 6.5.6 Community Map History

The current FIRM presents flooding information for the entire geographic area of Terrebonne Parish. Previously, separate FIRMs, Flood Hazard Boundary Maps (FHBMs) and/or Flood Boundary and Floodway Maps (FBFMs) may have been prepared for the incorporated communities and the unincorporated areas in the county that had identified SFHAs. Current and historical data relating to the maps prepared for the project area are presented in Table 27, "Community Map History." A description of each of the column headings and the source of the date is also listed below.

- Community Name includes communities falling within the geographic area shown on the FIRM, including those that fall on the boundary line, nonparticipating communities, and communities with maps that have been rescinded. Communities with No Special Flood Hazards are indicated by a footnote. If all maps (FHBM, FBFM, and FIRM) were rescinded for a community, it is not listed in this table unless SFHAs have been identified in this community.
- Initial Identification Date (First NFIP Map Published) is the date of the first NFIP map that identified flood hazards in the community. If the FHBM has been converted to a FIRM, the initial FHBM date is shown. If the community has never been mapped, the upcoming effective date or "pending" (for Preliminary FIS Reports) is shown. If the community is listed in Table 27 but not identified on the map, the community is treated as if it were unmapped.
- *Initial FHBM Effective Date* is the effective date of the first FHBM. This date may be the same date as the Initial NFIP Map Date.
- FHBM Revision Date(s) is the date(s) that the FHBM was revised, if applicable.
- Initial FIRM Effective Date is the date of the first effective FIRM for the community.
- FIRM Revision Date(s) is the date(s) the FIRM was revised, if applicable. This is

the revised date that is shown on the FIRM panel, if applicable. As countywide studies are completed or revised, each community listed should have its FIRM dates updated accordingly to reflect the date of the countywide study. Once the FIRMs exist in countywide format, as PMRs of FIRM panels within the county are completed, the FIRM Revision Dates in the table for each community affected by the PMR are updated with the date of the PMR, even if the PMR did not revise all the panels within that community.

The initial effective date for the Terrebonne Parish FIRMs in countywide format was September 7, 2023.

| Community Name                                                | Initial<br>Identification<br>Date | Initial FHBM<br>Effective<br>Date | FHBM<br>Revision<br>Date(s) | Initial FIRM<br>Effective<br>Date | FIRM<br>Revision<br>Date(s)                                                                    |
|---------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------|-----------------------------------|------------------------------------------------------------------------------------------------|
| Houma, City of <sup>1</sup>                                   | 11/28/1973                        | 11/28/1973                        | 10/31/1978<br>04/09/1976    | 05/19/1981                        | N/A                                                                                            |
| Terrebonne<br>Parish,<br>Unincorporated<br>Areas <sup>2</sup> | 11/20/1970                        | N/A                               | N/A                         | 11/20/1970                        | 09/07/2023<br>04/02/1992<br>05/01/1985<br>12/16/1980<br>11/19/1976<br>07/01/1974<br>06/15/1973 |

Table 27: Community Map History

<sup>1</sup> The City of Houma was consolidated into Terrebonne Parish following initial map releases

<sup>2</sup> Name prior to Terrebonne Parish, Consolidated Government

### SECTION 7.0 – CONTRACTED STUDIES AND COMMUNITY COORDINATION

### 7.1 Contracted Studies

Table 28 provides a summary of the contracted studies, by flooding source, that are included in this FIS Report.

| Flooding<br>Source     | FIS Report<br>Dated | Contractor                         | Number                                | Work<br>Completed<br>Date | Affected<br>Communities                          |
|------------------------|---------------------|------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------|
| Bayou Grand<br>Caillou | 09/07/2023          | RAMPP                              | HSFEHQ-09-<br>D-0369                  | September<br>2015         | Terrebonne Parish,<br>Consolidated<br>Government |
| Gulf of Mexico         | 09/07/2023          | RAMPP                              | HSFEHQ-09-<br>D-0369                  | September<br>2015         | Terrebonne Parish,<br>Consolidated<br>Government |
| Ouiski Bayou           | 06/1980             | U.S. Army<br>Corps of<br>Engineers | IAA-H-7-76,<br>Project Order<br>No. 9 | February<br>1979          | Terrebonne Parish,<br>Consolidated<br>Government |

Table 28: Summary of Contracted Studies Included in this FIS Report

| Flooding<br>Source | FIS Report<br>Dated | Contractor                         | Number                                | Work<br>Completed<br>Date | Affected<br>Communities                          |
|--------------------|---------------------|------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------|
| Zone A<br>Wetlands | 06/1980             | U.S. Army<br>Corps of<br>Engineers | IAA-H-7-76,<br>Project Order<br>No. 9 | February<br>1979          | Terrebonne Parish,<br>Consolidated<br>Government |

### Table 28: Summary of Contracted Studies Included in this FIS Report (continued)

### 7.2 Community Meetings

The dates of the community meetings held for this Flood Risk Project and previous Flood Risk Projects are shown in Table 29. These meetings may have previously been referred to by a variety of names (Community Coordination Officer (CCO), Scoping, Discovery, etc.), but all meetings represent opportunities for FEMA, community officials, study contractors, and other invited guests to discuss the planning for and results of the project.

# Table 29: Community Meetings

| Community          | FIS Report<br>Dated | Date of Meeting | Meeting Type | Attended By                                   |
|--------------------|---------------------|-----------------|--------------|-----------------------------------------------|
| Terrebonne Parish, |                     | 9/28/2021       | CCO Meeting  | FEMA, the community, and the study contractor |
| Consolidated       | 09/07/2023          | 08/30/2016      | FRR          | FEMA, the community, and the study contractor |
| Government         |                     | 09/10/2013      | Kickoff      | FEMA, the community, and the study contractor |

### **SECTION 8.0 – ADDITIONAL INFORMATION**

Information concerning the pertinent data used in the preparation of this FIS Report can be obtained by submitting an order with any required payment to the FEMA Engineering Library. For more information on this process, see <u>www.fema.gov</u>.

Table 30 is a list of the locations where FIRMs for Terrebonne Parish can be viewed. Please note that the maps at these locations are for reference only and are not for distribution. Also, please note that only the maps for the community listed in the table are available at that particular repository. A user may need to visit another repository to view maps from an adjacent community.

### Table 30: Map Repositories

| Community                                        | Address                                                  | City  | State | Zip Code |
|--------------------------------------------------|----------------------------------------------------------|-------|-------|----------|
| Terrebonne Parish,<br>Consolidated<br>Government | Park Avenue Professional<br>Building<br>7836 Park Avenue | Houma | LA    | 70360    |

The National Flood Hazard Layer (NFHL) dataset is a compilation of effective FIRM Databases and LOMCs. Together they create a GIS data layer for a State or Territory. The NFHL is updated as studies become effective and extracts are made available to the public monthly. NFHL data can be viewed or ordered from the website shown in Table 31.

Table 31 contains useful contact information regarding the FIS Report, the FIRM, and other relevant flood hazard and GIS data. In addition, information about the State NFIP Coordinator and GIS Coordinator is shown in this table. At the request of FEMA, each Governor has designated an agency of State or territorial government to coordinate that State's or territory's NFIP activities. These agencies often assist communities in developing and adopting necessary floodplain management measures. State GIS Coordinators are knowledgeable about the availability and location of State and local GIS data in their state.

| FEMA and the NFIP                            |                                                                                          |
|----------------------------------------------|------------------------------------------------------------------------------------------|
| FEMA and FEMA<br>Engineering Library website | www.fema.gov/flood-maps/products-tools/know-your-<br>risk/engineers-surveyors-architects |
| NFIP website                                 | www.fema.gov/flood-insurance                                                             |
| NFHL Dataset                                 | msc.fema.gov                                                                             |
| FEMA Region VI                               | FEMA Region VI<br>800 North Loop 288<br>Denton, TX 76209<br>(940) 383-7350               |
| Other Federal Agencies                       |                                                                                          |
| USGS website                                 | www.usgs.gov                                                                             |

### Table 31: Additional Information

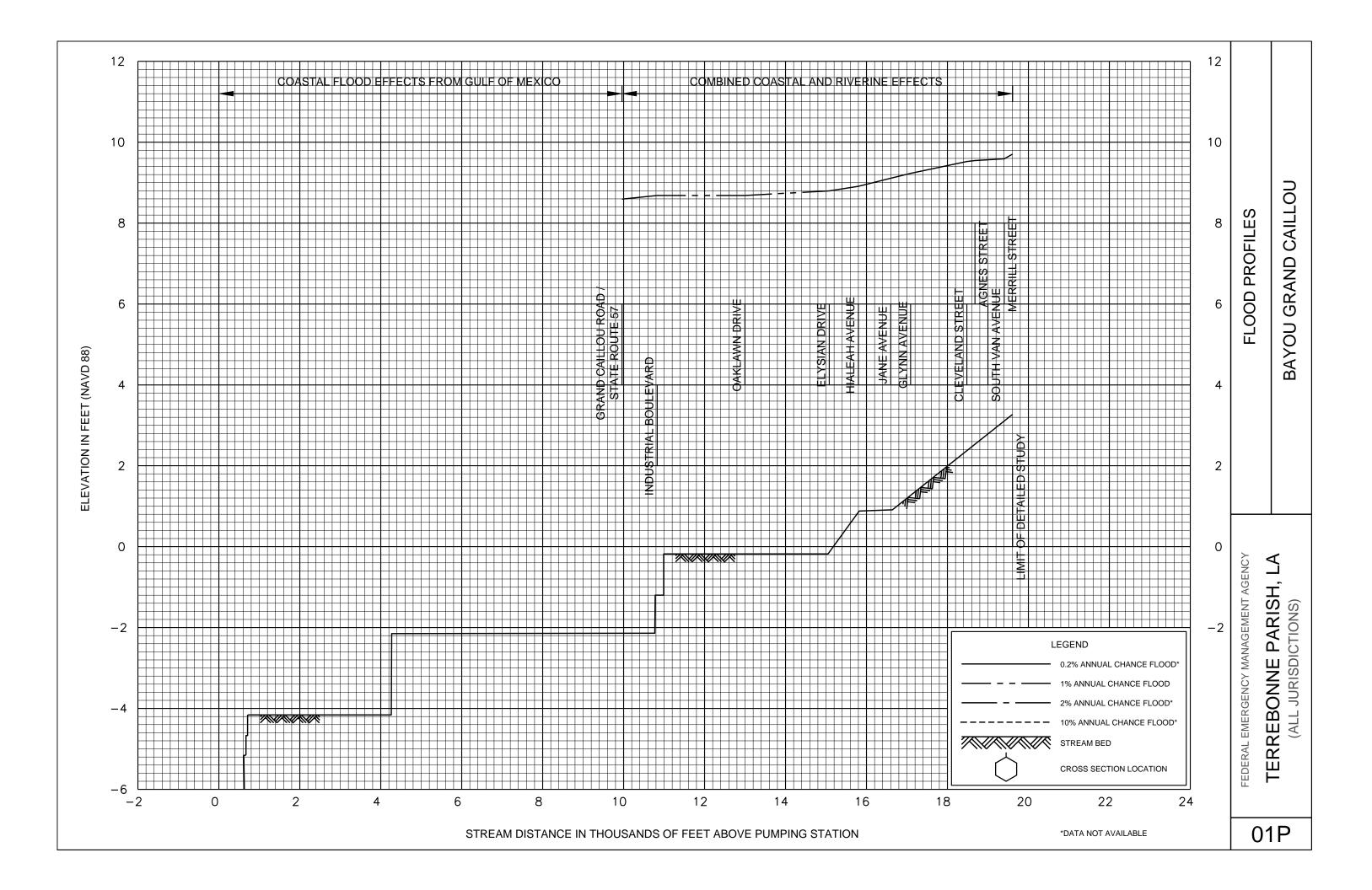
| Hydraulic Engineering Center website | www.hec.usace.army.mil                                                                                                                                                                                      |  |  |  |  |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| State Agencies and Organizations     |                                                                                                                                                                                                             |  |  |  |  |  |
| State NFIP Coordinator               | Cindy O'Neal<br>Louisiana Department of Transportation & Development<br>P.O. Box 94245, Capitol Station<br>Baton Rouge, Louisiana 70804<br>(225) 274-4354<br><u>coneal@dotdmail.dotd.state.la.us</u>        |  |  |  |  |  |
| State GIS Coordinator                | Craig Johnson, Director<br>Louisiana Geographic Information Center<br>E302 Howe-Russell Building<br>Louisiana State University<br>Baton Rouge, Louisiana 70803<br>Phone: (225) 578-3479<br>cjohnson@lsu.edu |  |  |  |  |  |

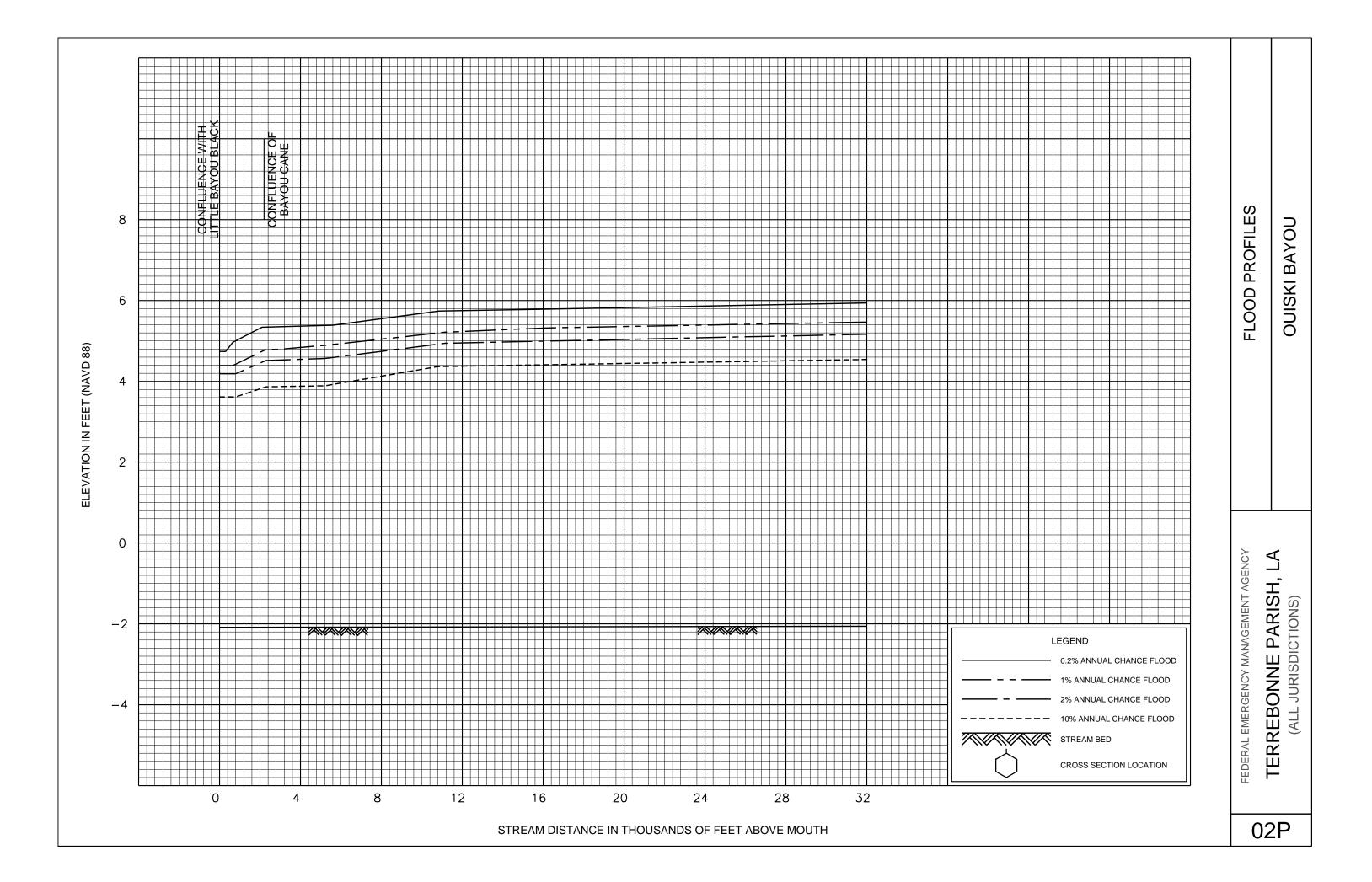
### Table 31: Additional Information (continued)

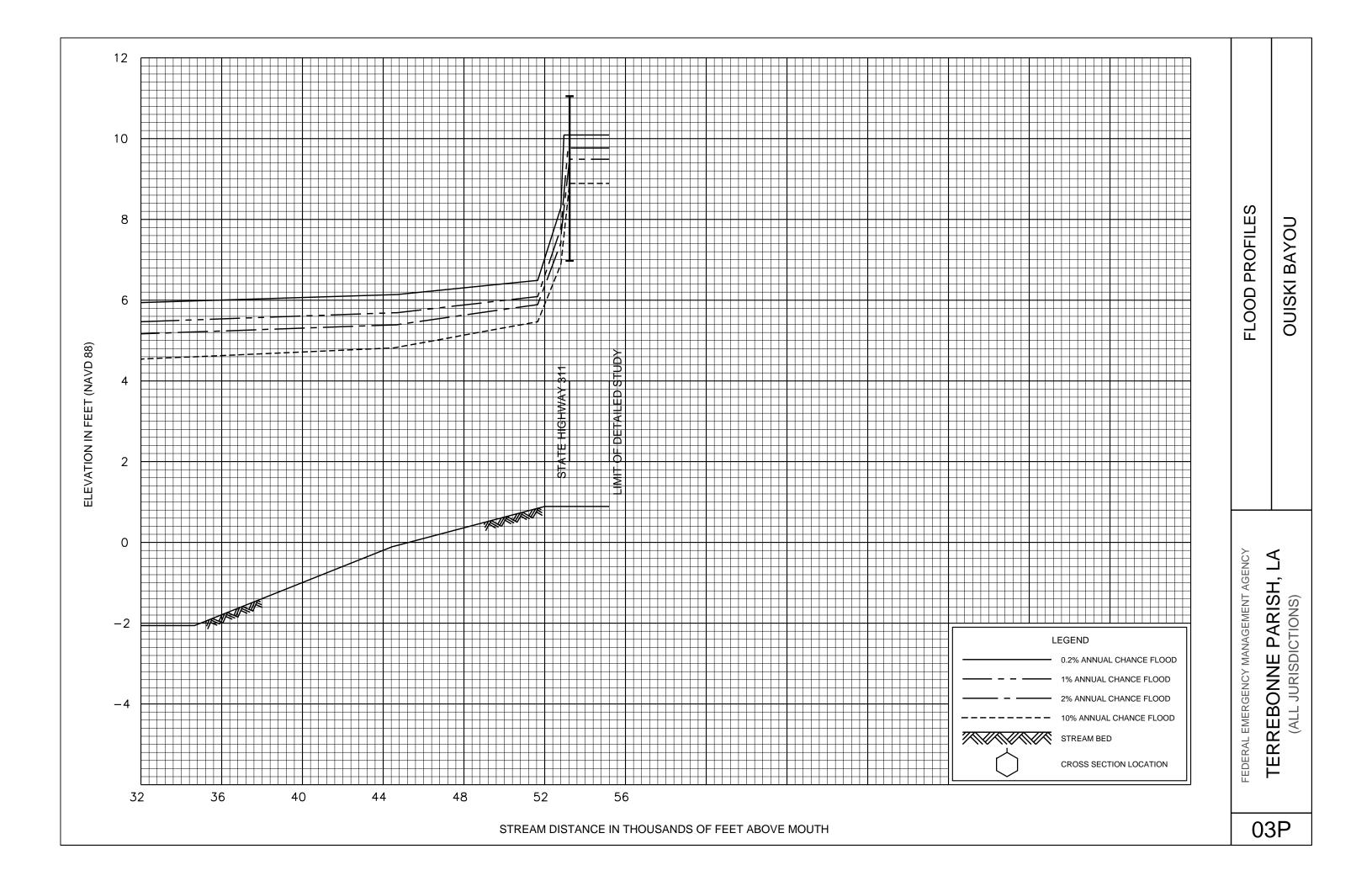
### SECTION 9.0 – BIBLIOGRAPHY AND REFERENCES

Table 32 includes sources used in the preparation of and cited in this FIS Report as well as additional studies that have been conducted in the study area.

| Citation<br>in this FIS | Publisher/<br>Issuer                                  | <i>Publication Title,</i> "Article," Volume,<br>Number, etc.                                                                                                                                                                                                                                                                                                                                                                                   | Author/Editor                                            | Place of<br>Publication | Publication<br>Date/ Date of<br>Issuance | Link                                                                                                  |
|-------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------|
| BLM 2020                | U.S. Bureau of<br>Land<br>Management                  | PLSS Township                                                                                                                                                                                                                                                                                                                                                                                                                                  | U.S. Bureau of<br>Land<br>Management                     | Washington,<br>D.C.     | July 2, 2020                             | https://navigator.blm.go<br>v/data?keyword=louisia<br>na&fs_publicRegion=E<br>astern%20States         |
| FEMA<br>2020            | Federal<br>Emergency<br>Management<br>Agency          | Levee Analysis and Mapping<br>Procedure (LAMP), Terrebonne<br>Parish, LA                                                                                                                                                                                                                                                                                                                                                                       | Federal<br>Emergency<br>Management<br>Agency             | Washington,<br>D.C.     | May 1, 2020                              |                                                                                                       |
| FEMA<br>1980            | Federal<br>Emergency<br>Management<br>Agency          | Terrebonne Parish Unincorporated<br>Areas Flood Insurance Study                                                                                                                                                                                                                                                                                                                                                                                | Federal<br>Emergency<br>Management<br>Agency             | Washington,<br>D.C.     | December 16,<br>1980                     |                                                                                                       |
| LADOTD<br>2020          | LA Department of<br>Transportation<br>and Development | Census Incorporated Places 2019                                                                                                                                                                                                                                                                                                                                                                                                                | LA Department<br>of Transportation<br>and<br>Development | Baton<br>Rouge, LA      | April 22, 2020                           | http://gismapping-<br>ladotd.opendata.arcgis.<br>com/datasets/census-<br>incorporated-places-<br>2019 |
| Resio<br>2007           |                                                       | White Paper on Estimating<br>Hurricane Inundation<br>Probabilities (with contributions<br>from S.J. Boc, L. Borgman, V.<br>Cardone, A. Cox, W.R. Dally, R.G.<br>Dean, D. Divoky, E. Hirsh, J.L.<br>Irish, d. Levinson, A. Niedoroda,<br>M.D. Powell, J.J. Ratcliff, C. Stutts,<br>J. Suhada, G.R. Toro, and P.J.<br>Vickery). Appendix 8-2 (R2007) of<br>USACE (2007), Interagency<br>Performance Evaluation Taskforce<br>(IPET) Final Report. | Resio, D.T.                                              |                         | 2007                                     |                                                                                                       |


# Table 32: Bibliography and References


| Citation<br>in this FIS | Publisher/<br>Issuer                                                    | <i>Publication Title,</i> "Article," Volume,<br>Number, etc.                                                                            | Author/Editor                                                      | Place of<br>Publication | Publication<br>Date/ Date of<br>Issuance | Link                                                      |
|-------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|------------------------------------------|-----------------------------------------------------------|
| Toro 2010               |                                                                         | <i>"Efficient Joint Probability Methods<br/>for Hurricane Surge<br/>Frequency Analysis," Ocean<br/>Engineering, Vo. 37, pp. 125-134</i> | G. Toro, D.T.<br>Resio, D. Divoky,<br>A.W. Niedoroda,<br>C.W. Reed |                         | 2010                                     |                                                           |
| TPCD<br>2020            | Terrebonne<br>Parish<br>Communications<br>District                      | TPCG Streets                                                                                                                            | Terrebonne<br>Parish<br>Communications<br>District                 | Houma, LA               | April 20, 2020                           |                                                           |
| USACE<br>1961           | U.S. Army Corps<br>of Engineers,<br>Hydrologic<br>Engineering<br>Center | HEC-2, Water-Surface Profiles<br>Computer Model                                                                                         | U.S. Army Corps<br>of Engineers                                    |                         | 1961                                     |                                                           |
| USACE<br>1966           | U.S. Army Corps<br>of Engineers,<br>Hydrologic<br>Engineering<br>Center | HEC-1, Flood Hydrograph<br>Package Computer Model                                                                                       | U.S. Army Corps<br>of Engineers                                    |                         | 1966                                     |                                                           |
| USDA<br>2020            | U.S. Department<br>of Agriculture                                       | National Agriculture Imagery<br>Program (NAIP)                                                                                          | U.S. Department<br>of Agriculture<br>Farm Service<br>Agency        | Washington,<br>D.C.     | January 14,<br>2020                      | https://nrcs.app.box.co<br>m/v/naip/file/59751610<br>9411 |
| USGS<br>2003            | U.S. Department<br>of Interior,<br>Geological<br>Survey                 | Atlas: The Louisiana Statewide<br>GIS                                                                                                   | U.S. Department<br>of Interior,<br>Geological<br>Survey            |                         | 2003                                     | <u>atlas.lsu.edu</u>                                      |
| USGS<br>2011            | U.S. Department<br>of Interior,<br>Geological<br>Survey                 | Topographic LiDAR: Louisiana<br>Region 1                                                                                                | U.S. Department<br>of Interior,<br>Geological<br>Survey            | Charleston,<br>SC       | 2011                                     | https://www.fisheries.no<br>aa.gov/inport/item/5011<br>9  |


# Table 32: Bibliography and References (continued)

# Table 32: Bibliography and References (continued)

| Citation<br>in this FIS | Publisher/<br>Issuer      | <i>Publication Title,</i> "Article," Volume,<br>Number, etc. | Author/Editor             | Place of<br>Publication | Publication<br>Date/ Date of<br>Issuance | Link |
|-------------------------|---------------------------|--------------------------------------------------------------|---------------------------|-------------------------|------------------------------------------|------|
| USGS<br>2020            | U.S. Geological<br>Survey | National Hydrography Dataset<br>(NHD)                        | U.S. Geological<br>Survey | Washington,<br>D.C.     | September 1, 2020                        |      |





